Suppr超能文献

自动化标志点识别对形态计量分析的影响。

The effect of automated landmark identification on morphometric analyses.

机构信息

Department of Anthropology, Stony Brook University, Stony Brook, NY, USA.

Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada.

出版信息

J Anat. 2019 Jun;234(6):917-935. doi: 10.1111/joa.12973. Epub 2019 Mar 22.

Abstract

Morphometric analysis of anatomical landmarks allows researchers to identify specific morphological differences between natural populations or experimental groups, but manually identifying landmarks is time-consuming. We compare manually and automatically generated adult mouse skull landmarks and subsequent morphometric analyses to elucidate how switching from manual to automated landmarking will impact morphometric analysis results for large mouse (Mus musculus) samples (n = 1205) that represent a wide range of 'normal' phenotypic variation (62 genotypes). Other studies have suggested that the use of automated landmarking methods is feasible, but this study is the first to compare the utility of current automated approaches to manual landmarking for a large dataset that allows the quantification of intra- and inter-strain variation. With this unique sample, we investigated how switching to a non-linear image registration-based automated landmarking method impacts estimated differences in genotype mean shape and shape variance-covariance structure. In addition, we tested whether an initial registration of specimen images to genotype-specific averages improves automatic landmark identification accuracy. Our results indicated that automated landmark placement was significantly different than manual landmark placement but that estimated skull shape covariation was correlated across methods. The addition of a preliminary genotype-specific registration step as part of a two-level procedure did not substantially improve on the accuracy of one-level automatic landmark placement. The landmarks with the lowest automatic landmark accuracy are found in locations with poor image registration alignment. The most serious outliers within morphometric analysis of automated landmarks displayed instances of stochastic image registration error that are likely representative of errors common when applying image registration methods to micro-computed tomography datasets that were initially collected with manual landmarking in mind. Additional efforts during specimen preparation and image acquisition can help reduce the number of registration errors and improve registration results. A reduction in skull shape variance estimates were noted for automated landmarking methods compared with manual landmarking. This partially reflects an underestimation of more extreme genotype shapes and loss of biological signal, but largely represents the fact that automated methods do not suffer from intra-observer landmarking error. For appropriate samples and research questions, our image registration-based automated landmarking method can eliminate the time required for manual landmarking and have a similar power to identify shape differences between inbred mouse genotypes.

摘要

解剖学标志的形态计量分析使研究人员能够识别自然种群或实验组之间的特定形态差异,但手动识别标志非常耗时。我们比较了手动和自动生成的成年小鼠头骨标志点及其后续的形态计量分析,以阐明从手动到自动标志点的转变将如何影响具有广泛“正常”表型变异(62 种基因型)的大量(n = 1205)小鼠样本的形态计量分析结果。其他研究表明,使用自动化标志点方法是可行的,但这项研究首次比较了当前自动化方法与手动标志点方法对于允许量化个体内和个体间变异的大型数据集的实用性。利用这个独特的样本,我们研究了切换到基于非线性图像配准的自动化标志点方法如何影响估计的基因型平均形状和形状方差协方差结构的差异。此外,我们还测试了将标本图像初始配准到特定基因型平均值是否可以提高自动标志点识别的准确性。我们的结果表明,自动化标志点的放置与手动标志点的放置有显著差异,但估计的头骨形状协变在方法之间是相关的。作为两级程序的一部分,增加一个初步的特定基因型的注册步骤并没有实质性地提高一级自动标志点放置的准确性。自动标志点精度最低的标志点位于图像配准对齐效果较差的位置。在自动标志点形态计量分析中最严重的异常值是随机图像配准错误的实例,这些错误可能代表在最初采用手动标志点进行采集的情况下,应用图像配准方法到微计算机断层扫描数据集时常见的错误。在标本制备和图像采集过程中增加额外的努力可以帮助减少配准错误的数量并改善配准结果。与手动标志点相比,自动标志点方法的头骨形状方差估计值有所降低。这部分反映了对更极端基因型形状的低估和生物信号的丢失,但主要反映了自动方法不会受到观察者内部标志点误差的影响。对于适当的样本和研究问题,我们基于图像配准的自动化标志点方法可以消除手动标志点所需的时间,并且具有类似的能力来识别近交系小鼠基因型之间的形状差异。

相似文献

引用本文的文献

9
Automated landmarking via multiple templates.通过多个模板进行自动地标定位。
PLoS One. 2022 Dec 1;17(12):e0278035. doi: 10.1371/journal.pone.0278035. eCollection 2022.

本文引用的文献

1
MRI to Assess Neurological Function.磁共振成像评估神经功能。
Curr Protoc Mouse Biol. 2018 Jun;8(2):e44. doi: 10.1002/cpmo.44. Epub 2018 May 22.
2
The developmental-genetics of canalization. canalization 的发育遗传学。
Semin Cell Dev Biol. 2019 Apr;88:67-79. doi: 10.1016/j.semcdb.2018.05.019. Epub 2018 May 24.
8
A Landmark-Free Method for Three-Dimensional Shape Analysis.一种用于三维形状分析的无地标方法。
PLoS One. 2016 Mar 8;11(3):e0150368. doi: 10.1371/journal.pone.0150368. eCollection 2016.
10
Morphometrics, 3D Imaging, and Craniofacial Development.形态测量学、三维成像与颅面发育
Curr Top Dev Biol. 2015;115:561-97. doi: 10.1016/bs.ctdb.2015.09.003. Epub 2015 Oct 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验