Suppr超能文献

钙离子经 L 型钙通道流入调节下颌骨发育。

Calcium influx through L-type CaV1.2 Ca2+ channels regulates mandibular development.

机构信息

Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina, USA.

出版信息

J Clin Invest. 2013 Apr;123(4):1638-46. doi: 10.1172/JCI66903. Epub 2013 Mar 15.

Abstract

The identification of a gain-of-function mutation in CACNA1C as the cause of Timothy Syndrome (TS), a rare disorder characterized by cardiac arrhythmias and syndactyly, highlighted unexpected roles for the L-type voltage-gated Ca2+ channel CaV1.2 in nonexcitable cells. How abnormal Ca2+ influx through CaV1.2 underlies phenotypes such as the accompanying syndactyly or craniofacial abnormalities in the majority of affected individuals is not readily explained by established CaV1.2 roles. Here, we show that CaV1.2 is expressed in the first and second pharyngeal arches within the subset of cells that give rise to jaw primordia. Gain-of-function and loss-of-function studies in mouse, in concert with knockdown/rescue and pharmacological approaches in zebrafish, demonstrated that Ca2+ influx through CaV1.2 regulates jaw development. Cranial neural crest migration was unaffected by CaV1.2 knockdown, suggesting a role for CaV1.2 later in development. Focusing on the mandible, we observed that cellular hypertrophy and hyperplasia depended upon Ca2+ signals through CaV1.2, including those that activated the calcineurin signaling pathway. Together, these results provide new insights into the role of voltage-gated Ca2+ channels in nonexcitable cells during development.

摘要

CACNA1C 功能获得性突变的鉴定是 Timothy 综合征(TS)的病因,TS 是一种罕见的疾病,其特征是心律失常和并指畸形,这突显了 L 型电压门控钙通道 CaV1.2 在非兴奋性细胞中的意想不到的作用。异常的 Ca2+ 通过 CaV1.2 内流如何导致大多数受影响个体的表型,如伴发的并指畸形或颅面异常,这不能用已建立的 CaV1.2 作用来轻易解释。在这里,我们表明 CaV1.2 在第一和第二咽弓中表达,这些细胞是颌原基的来源。在小鼠中的功能获得和功能丧失研究,与斑马鱼中的敲低/挽救和药理学方法相结合,表明 Ca2+ 通过 CaV1.2 的内流调节颌的发育。颅神经嵴迁移不受 CaV1.2 敲低的影响,这表明 CaV1.2 在发育后期发挥作用。我们专注于下颌骨,观察到细胞肥大和增生取决于 CaV1.2 的 Ca2+ 信号,包括那些激活钙调神经磷酸酶信号通路的信号。总之,这些结果为电压门控钙通道在发育过程中非兴奋性细胞中的作用提供了新的见解。

相似文献

1
Calcium influx through L-type CaV1.2 Ca2+ channels regulates mandibular development.
J Clin Invest. 2013 Apr;123(4):1638-46. doi: 10.1172/JCI66903. Epub 2013 Mar 15.
3
Cav1.2 channelopathies causing autism: new hallmarks on Timothy syndrome.
Pflugers Arch. 2020 Jul;472(7):775-789. doi: 10.1007/s00424-020-02430-0. Epub 2020 Jul 3.
4
Cellular mechanisms of ventricular arrhythmias in a mouse model of Timothy syndrome (long QT syndrome 8).
J Mol Cell Cardiol. 2014 Jan;66:63-71. doi: 10.1016/j.yjmcc.2013.10.021. Epub 2013 Nov 9.
5
State-dependent signaling by Cav1.2 regulates hair follicle stem cell function.
Genes Dev. 2013 Jun 1;27(11):1217-22. doi: 10.1101/gad.216556.113.
6
Gain-of-function mutations in the calcium channel CACNA1C (Cav1.2) cause non-syndromic long-QT but not Timothy syndrome.
J Mol Cell Cardiol. 2015 Mar;80:186-95. doi: 10.1016/j.yjmcc.2015.01.002. Epub 2015 Jan 26.
8
Enhanced oligodendrocyte maturation and myelination in a mouse model of Timothy syndrome.
Glia. 2018 Nov;66(11):2324-2339. doi: 10.1002/glia.23468. Epub 2018 Aug 26.
9
Altered Cav1.2 function in the Timothy syndrome mouse model produces ascending serotonergic abnormalities.
Eur J Neurosci. 2017 Oct;46(8):2416-2425. doi: 10.1111/ejn.13707. Epub 2017 Oct 5.
10
Elevated basal transcription can underlie timothy channel association with autism related disorders.
Prog Neurobiol. 2020 Aug;191:101820. doi: 10.1016/j.pneurobio.2020.101820. Epub 2020 May 11.

引用本文的文献

2
Advanced Piezoelectric Materials, Devices, and Systems for Orthopedic Medicine.
Adv Sci (Weinh). 2025 Jan;12(3):e2410400. doi: 10.1002/advs.202410400. Epub 2024 Dec 12.
3
Multiple beta cell-independent mechanisms drive hypoglycemia in Timothy syndrome.
Nat Commun. 2024 Oct 17;15(1):8980. doi: 10.1038/s41467-024-52885-3.
6
Convergence of Calcium Channel Regulation and Mechanotransduction in Skeletal Regenerative Biomaterial Design.
Adv Healthc Mater. 2023 Oct;12(27):e2301081. doi: 10.1002/adhm.202301081. Epub 2023 Jul 16.
7
Current updates on arrhythmia within Timothy syndrome: genetics, mechanisms and therapeutics.
Expert Rev Mol Med. 2023 May 3;25:e17. doi: 10.1017/erm.2023.11.
8
CACNA1C-Related Channelopathies.
Handb Exp Pharmacol. 2023;279:159-181. doi: 10.1007/164_2022_624.
10
Mechanisms Underlying Influence of Bioelectricity in Development.
Front Cell Dev Biol. 2022 Feb 14;10:772230. doi: 10.3389/fcell.2022.772230. eCollection 2022.

本文引用的文献

2
Matrix-embedded cells control osteoclast formation.
Nat Med. 2011 Sep 11;17(10):1235-41. doi: 10.1038/nm.2448.
4
In vivo calcium dynamics during neural crest cell migration and patterning using GCaMP3.
Dev Biol. 2011 Oct 15;358(2):309-17. doi: 10.1016/j.ydbio.2011.08.004. Epub 2011 Aug 16.
5
Calcium influx through Cav1.2 is a proximal signal for pathological cardiomyocyte hypertrophy.
J Mol Cell Cardiol. 2011 Mar;50(3):460-70. doi: 10.1016/j.yjmcc.2010.11.012. Epub 2010 Nov 25.
6
Quantitative proteomics of the Cav2 channel nano-environments in the mammalian brain.
Proc Natl Acad Sci U S A. 2010 Aug 24;107(34):14950-7. doi: 10.1073/pnas.1005940107. Epub 2010 Jul 28.
7
Wnt11 patterns a myocardial electrical gradient through regulation of the L-type Ca(2+) channel.
Nature. 2010 Aug 12;466(7308):874-8. doi: 10.1038/nature09249. Epub 2010 Jul 25.
8
Physical and functional interaction between calcineurin and the cardiac L-type Ca2+ channel.
Circ Res. 2009 Jul 2;105(1):51-60. doi: 10.1161/CIRCRESAHA.109.199828. Epub 2009 May 28.
9
Relationship between neural crest cells and cranial mesoderm during head muscle development.
PLoS One. 2009;4(2):e4381. doi: 10.1371/journal.pone.0004381. Epub 2009 Feb 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验