Suppr超能文献

利用 GCaMP3 研究神经嵴细胞迁移和模式形成过程中的体内钙动力学。

In vivo calcium dynamics during neural crest cell migration and patterning using GCaMP3.

机构信息

Stowers Institute for Medical Research, Kansas City, MO 64110, USA.

出版信息

Dev Biol. 2011 Oct 15;358(2):309-17. doi: 10.1016/j.ydbio.2011.08.004. Epub 2011 Aug 16.

Abstract

Examining calcium dynamics within the neural crest (NC) has the potential to shed light on mechanisms that regulate complex cell migration and patterning events during embryogenesis. Unfortunately, typical calcium indicators are added to culture media or have low signal to noise after microinjection into tissue that severely limit analyses to cultured cells or superficial events. Here, we studied in vivo calcium dynamics during NC cell migration and patterning, using a genetically encoded calcium sensor, GCaMP3. We discovered that trunk NC cells displayed significantly more spontaneous calcium transients than cranial NC cells, and during cell aggregation versus cell migration events. Spontaneous calcium transients were more prevalent during NC cell aggregation into discrete sympathetic ganglia (SG). Blocking of N-cadherin activity in trunk NC cells near the presumptive SG led to a dramatic decrease in the frequency of spontaneous calcium transients. Detailed analysis and mathematical modeling of cell behaviors during SG formation showed NC cells aggregated into clusters after displaying a spontaneous calcium transient. This approach highlights the novel application of a genetically encoded calcium indicator to study subsets of cells during ventral events in embryogenesis.

摘要

研究神经嵴(NC)内的钙动力学有可能揭示调节胚胎发生过程中复杂细胞迁移和模式形成事件的机制。不幸的是,典型的钙指示剂被添加到培养基中,或者在微注射到组织后信号与噪声的比值很低,这严重限制了对培养细胞或浅层事件的分析。在这里,我们使用遗传编码的钙传感器 GCaMP3 研究了 NC 细胞迁移和模式形成过程中的体内钙动力学。我们发现,与颅神经嵴细胞相比,躯干神经嵴细胞显示出更多的自发钙瞬变,并且在细胞聚集与细胞迁移事件中也是如此。自发钙瞬变在 NC 细胞聚集形成离散的交感神经节(SG)时更为普遍。阻断躯干神经嵴细胞中接近假定的 SG 的 N-钙粘蛋白活性会导致自发钙瞬变的频率急剧下降。对 SG 形成过程中细胞行为的详细分析和数学建模表明,NC 细胞在显示自发钙瞬变后聚集形成簇。这种方法突出了遗传编码钙指示剂在研究胚胎发生过程中腹侧事件中细胞亚群的新应用。

相似文献

1
In vivo calcium dynamics during neural crest cell migration and patterning using GCaMP3.
Dev Biol. 2011 Oct 15;358(2):309-17. doi: 10.1016/j.ydbio.2011.08.004. Epub 2011 Aug 16.
2
Eph/ephrins and N-cadherin coordinate to control the pattern of sympathetic ganglia.
Development. 2006 Dec;133(24):4839-47. doi: 10.1242/dev.02662. Epub 2006 Nov 15.
3
Imaging neural crest cell dynamics during formation of dorsal root ganglia and sympathetic ganglia.
Development. 2005 Jan;132(2):235-45. doi: 10.1242/dev.01553. Epub 2004 Dec 8.
4
Restricted response of mesencephalic neural crest to sympathetic differentiation signals in the trunk.
Dev Biol. 2005 Feb 1;278(1):175-92. doi: 10.1016/j.ydbio.2004.10.024.
5
The neural crest cell cycle is related to phases of migration in the head.
Development. 2014 Mar;141(5):1095-103. doi: 10.1242/dev.098855.
7
CXCR4 controls ventral migration of sympathetic precursor cells.
J Neurosci. 2010 Sep 29;30(39):13078-88. doi: 10.1523/JNEUROSCI.0892-10.2010.
9
10
Neural Crest Migration and Survival Are Susceptible to Morpholino-Induced Artifacts.
PLoS One. 2016 Dec 22;11(12):e0167278. doi: 10.1371/journal.pone.0167278. eCollection 2016.

引用本文的文献

1
Three distinct classes of myenteric ganglia in mice and humans: insights from quantitative analyses.
PeerJ. 2025 Apr 24;13:e19329. doi: 10.7717/peerj.19329. eCollection 2025.
3
Nanotube-like processes facilitate material transfer between photoreceptors.
EMBO Rep. 2021 Nov 4;22(11):e53732. doi: 10.15252/embr.202153732. Epub 2021 Sep 8.
6
Spinal Cord Stimulation for Pain Treatment After Spinal Cord Injury.
Neurosci Bull. 2019 Jun;35(3):527-539. doi: 10.1007/s12264-018-0320-9. Epub 2018 Dec 17.
7
Tunneling Nanotubes as a Novel Route of Cell-to-Cell Spread of Herpesviruses.
J Virol. 2018 Apr 27;92(10). doi: 10.1128/JVI.00090-18. Print 2018 May 15.
8
Substitution with a Single Cysteine in the Green Fluorescent Protein-Based Calcium Indicator GCaMP3 Enhances Calcium Sensitivity.
J Fluoresc. 2017 Nov;27(6):2187-2193. doi: 10.1007/s10895-017-2159-2. Epub 2017 Aug 8.
9
The use of rats and mice as animal models in ex vivo bone growth and development studies.
Bone Joint Res. 2016 Dec;5(12):610-618. doi: 10.1302/2046-3758.512.BJR-2016-0102.R2.
10
In vivo Calcium Imaging of Evoked Calcium Waves in the Embryonic Cortex.
Front Cell Neurosci. 2016 Jan 6;9:500. doi: 10.3389/fncel.2015.00500. eCollection 2015.

本文引用的文献

2
Dynamic lineage analysis of embryonic morphogenesis using transgenic quail and 4D multispectral imaging.
Genesis. 2011 Jul;49(7):619-43. doi: 10.1002/dvg.20754. Epub 2011 Jun 17.
5
Light-avoidance-mediating photoreceptors tile the Drosophila larval body wall.
Nature. 2010 Dec 16;468(7326):921-6. doi: 10.1038/nature09576. Epub 2010 Nov 10.
6
CXCR4 controls ventral migration of sympathetic precursor cells.
J Neurosci. 2010 Sep 29;30(39):13078-88. doi: 10.1523/JNEUROSCI.0892-10.2010.
7
Neural crest migration: patterns, phases and signals.
Dev Biol. 2010 Aug 15;344(2):566-8. doi: 10.1016/j.ydbio.2010.05.005. Epub 2010 May 15.
8
Flickering calcium microdomains signal turning of migrating cells.
Can J Physiol Pharmacol. 2010 Feb;88(2):105-10. doi: 10.1139/Y09-118.
9
The role of neural activity in the migration and differentiation of enteric neuron precursors.
Neurogastroenterol Motil. 2010 May;22(5):e127-37. doi: 10.1111/j.1365-2982.2009.01462.x. Epub 2010 Jan 18.
10
Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators.
Nat Methods. 2009 Dec;6(12):875-81. doi: 10.1038/nmeth.1398. Epub 2009 Nov 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验