Suppr超能文献

星际冰中 CO2 形成的分子动力学模拟。

Molecular dynamics simulations of CO2 formation in interstellar ices.

机构信息

Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.

出版信息

J Phys Chem A. 2013 Aug 15;117(32):7064-74. doi: 10.1021/jp400065v. Epub 2013 Apr 18.

Abstract

CO2 ice is one of the most abundant components in ice-coated interstellar ices besides H2O and CO, but the most favorable path to CO2 ice is still unclear. Molecular dynamics calculations on the ultraviolet photodissociation of different kinds of CO-H2O ice systems have been performed at 10 K in order to demonstrate that the reaction between CO and an OH molecule resulting from H2O photodissociation through the first excited state is a possible route to form CO2 ice. However, our calculations, which take into account different ice surface models, suggest that there is another product with a higher formation probability ((3.00 ± 0.07) × 10(-2)), which is the HOCO complex, whereas the formation of CO2 has a probability of only (3.6 ± 0.7) × 10(-4). The initial location of the CO is key to obtain reaction and form CO2: the CO needs to be located deep into the ice. The HOCO complex becomes trapped in the cold ice surface in the trans-HOCO minimum because it quickly loses its internal energy to the surrounding ice, preventing further reaction to H + CO2. Several laboratory experiments have been carried out recently, and they confirm that CO2 can also be formed through other, different routes. Here we compare our theoretical results with the data available from experiments studying the formation of CO2 through a similar pathway as ours, even though the initial conditions were not exactly the same. Our results also show that the HCO van der Waals complex can be formed through the interaction of CO with the H atom that is formed as a product of H2O photodissociation. Thus, the reaction of the H atom photofragment following H2O photodissociation with CO can be a possible route to form HCO ice.

摘要

CO2 冰是除 H2O 和 CO 之外覆盖在星际冰上最丰富的成分之一,但 CO2 冰最有利的形成途径仍不清楚。为了证明 CO 与 H2O 光解通过第一激发态产生的 OH 分子之间的反应是形成 CO2 冰的可能途径,我们在 10 K 下对不同种类的 CO-H2O 冰系统的紫外光解离进行了分子动力学计算。然而,我们的计算考虑了不同的冰表面模型,表明存在另一种形成概率更高的产物((3.00 ± 0.07) × 10(-2)),即 HOCO 络合物,而 CO2 的形成概率仅为 (3.6 ± 0.7) × 10(-4)。CO 的初始位置对于获得反应和形成 CO2 至关重要:CO 需要位于冰的深处。由于 HOCO 络合物会迅速将其内部能量传递给周围的冰,从而阻止进一步与 H + CO2 反应,因此它会被困在冷冰表面的反式 HOCO 最低点。最近进行了几项实验室实验,它们证实 CO2 也可以通过其他不同的途径形成。在这里,我们将理论结果与通过类似途径研究 CO2 形成的实验数据进行了比较,尽管初始条件不完全相同。我们的结果还表明,HCO 范德华络合物可以通过 CO 与作为 H2O 光解产物形成的 H 原子的相互作用形成。因此,H2O 光解后 H 原子光碎片与 CO 的反应可能是形成 HCO 冰的可能途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验