Ghesquière P, Mineva T, Talbi D, Theulé P, Noble J A, Chiavassa T
Laboratoire Univers et Particules de Montpellier UMR 5299, CNRS et Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier Cedex 05, France.
Phys Chem Chem Phys. 2015 May 7;17(17):11455-68. doi: 10.1039/c5cp00558b.
The diffusion of molecules in interstellar ice is a fundamental phenomenon to take into account while studying the formation of complex molecules in this ice. This work presents a theoretical study on the diffusion of H2O, NH3, CO2, CO, and H2CO in the bulk of a low density amorphous (LDA) ice, while taking into account the physical conditions prevailing in space, i.e. temperatures below 150 K and extremely low pressure. This study was undertaken by means of molecular dynamics simulations. For CO2 for which no experimental data were available we conducted our own experiments. From our calculations we show that, at low temperatures, the diffusion of molecules in the bulk of a LDA ice is driven by the self-diffusion of water molecules in the ice. With this study we demonstrate that molecular dynamics allows the calculation of diffusion coefficients for small molecules in LDA ice that are convincingly comparable to experimentally measured diffusion coefficients. We also provide diffusion coefficients for a series of molecules of astrochemical interest.
在研究星际冰中复杂分子的形成时,分子在星际冰中的扩散是一个需要考虑的基本现象。这项工作呈现了一项关于H₂O、NH₃、CO₂、CO和H₂CO在低密度无定形(LDA)冰体中扩散的理论研究,同时考虑了太空中普遍存在的物理条件,即低于150K的温度和极低的压力。该研究通过分子动力学模拟进行。对于没有可用实验数据的CO₂,我们进行了自己的实验。从我们的计算中可以看出,在低温下,分子在LDA冰体中的扩散是由冰中水分子的自扩散驱动的。通过这项研究,我们证明分子动力学能够计算出LDA冰中小分子的扩散系数,这些系数与实验测量的扩散系数具有令人信服的可比性。我们还提供了一系列具有天体化学意义的分子的扩散系数。