FAS Center for Systems Biology, Harvard University, Cambridge, MA, 02138, USA.
FEMS Microbiol Rev. 2013 Sep;37(5):830-48. doi: 10.1111/1574-6976.12022. Epub 2013 Apr 22.
Humans are home to complex microbial communities, whose aggregate genomes and their encoded metabolic activities are referred to as the human microbiome. Recently, researchers have begun to appreciate that different human body habitats and the activities of their resident microorganisms can be better understood in ecological terms, as a range of spatial scales encompassing single cells, guilds of microorganisms responsive to a similar substrate, microbial communities, body habitats, and host populations. However, the bulk of the work to date has focused on studies of culturable microorganisms in isolation or on DNA sequencing-based surveys of microbial diversity in small-to-moderate-sized cohorts of individuals. Here, we discuss recent work that highlights the potential for assessing the human microbiome at a range of spatial scales, and for developing novel techniques that bridge multiple levels: for example, through the combination of single-cell methods and metagenomic sequencing. These studies promise to not only provide a much-needed epidemiological and ecological context for mechanistic studies of culturable and genetically tractable microorganisms, but may also lead to the discovery of fundamental rules that govern the assembly and function of host-associated microbial communities.
人类是复杂微生物群落的家园,这些微生物的总基因组及其编码的代谢活性被称为人类微生物组。最近,研究人员开始认识到,不同的人体栖息地及其常驻微生物的活动可以用生态学的术语来更好地理解,因为这一系列空间尺度涵盖了单细胞、对相似基质有反应的微生物群落、微生物群落、人体栖息地和宿主群体。然而,迄今为止,大部分工作都集中在对可培养微生物的单独研究或对小到中等规模个体的微生物多样性的基于 DNA 测序的调查上。在这里,我们讨论了最近的工作,这些工作强调了在一系列空间尺度上评估人类微生物组的潜力,并开发了将多个层次联系起来的新技术:例如,通过单细胞方法和宏基因组测序的结合。这些研究不仅有望为可培养和遗传上可操作的微生物的机制研究提供急需的流行病学和生态学背景,而且还可能发现支配宿主相关微生物群落组装和功能的基本规则。