Suppr超能文献

微流控液滴中的微生物相互作用网络推断。

Microbial Interaction Network Inference in Microfluidic Droplets.

机构信息

Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.

Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.

出版信息

Cell Syst. 2019 Sep 25;9(3):229-242.e4. doi: 10.1016/j.cels.2019.06.008. Epub 2019 Sep 4.

Abstract

Microbial interactions are major drivers of microbial community dynamics and functions but remain challenging to identify because of limitations in parallel culturing and absolute abundance quantification of community members across environments and replicates. To this end, we developed Microbial Interaction Network Inference in microdroplets (MINI-Drop). Fluorescence microscopy coupled to computer vision techniques were used to rapidly determine the absolute abundance of each strain in hundreds to thousands of droplets per condition. We showed that MINI-Drop could accurately infer pairwise and higher-order interactions in synthetic consortia. We developed a stochastic model of community assembly to provide insight into the heterogeneity in community states across droplets. Finally, we elucidated the complex web of interactions linking antibiotics and different species in a synthetic consortium. In sum, we demonstrated a robust and generalizable method to infer microbial interaction networks by random encapsulation of sub-communities into microfluidic droplets.

摘要

微生物相互作用是微生物群落动态和功能的主要驱动因素,但由于在环境和重复实验中对群落成员进行平行培养和绝对丰度定量的限制,微生物相互作用的识别仍然具有挑战性。为此,我们开发了微滴中的微生物相互作用网络推断(MINI-Drop)。荧光显微镜结合计算机视觉技术,可快速确定每个菌株在数百到数千个微滴中的绝对丰度。我们表明,MINI-Drop 可以准确推断合成群落中的成对和更高阶相互作用。我们开发了一种群落组装的随机模型,以深入了解不同液滴之间群落状态的异质性。最后,我们阐明了抗生素和合成群落中不同物种之间相互联系的复杂网络。总之,我们通过将亚群落随机封装到微流控液滴中,展示了一种强大且可推广的推断微生物相互作用网络的方法。

相似文献

1
Microbial Interaction Network Inference in Microfluidic Droplets.
Cell Syst. 2019 Sep 25;9(3):229-242.e4. doi: 10.1016/j.cels.2019.06.008. Epub 2019 Sep 4.
2
Network-based metabolic analysis and microbial community modeling.
Curr Opin Microbiol. 2016 Jun;31:124-131. doi: 10.1016/j.mib.2016.03.008. Epub 2016 Apr 6.
3
Massively parallel screening of synthetic microbial communities.
Proc Natl Acad Sci U S A. 2019 Jun 25;116(26):12804-12809. doi: 10.1073/pnas.1900102116. Epub 2019 Jun 11.
4
Spatiotemporal Dynamics of Synthetic Microbial Consortia in Microfluidic Devices.
ACS Synth Biol. 2019 Sep 20;8(9):2051-2058. doi: 10.1021/acssynbio.9b00146. Epub 2019 Aug 9.
5
Microbial interactions and community assembly at microscales.
Curr Opin Microbiol. 2016 Jun;31:227-234. doi: 10.1016/j.mib.2016.03.015. Epub 2016 May 25.
6
High-order interactions distort the functional landscape of microbial consortia.
PLoS Biol. 2019 Dec 12;17(12):e3000550. doi: 10.1371/journal.pbio.3000550. eCollection 2019 Dec.
7
The Contribution of High-Order Metabolic Interactions to the Global Activity of a Four-Species Microbial Community.
PLoS Comput Biol. 2016 Sep 13;12(9):e1005079. doi: 10.1371/journal.pcbi.1005079. eCollection 2016 Sep.
8
Tracking the stochastic growth of bacterial populations in microfluidic droplets.
Phys Biol. 2022 Feb 17;19(2):026003. doi: 10.1088/1478-3975/ac4c9b.
9
Microfluidic cultivation and analysis tools for interaction studies of microbial co-cultures.
Curr Opin Biotechnol. 2020 Apr;62:106-115. doi: 10.1016/j.copbio.2019.09.001. Epub 2019 Nov 9.
10
Interaction variability shapes succession of synthetic microbial ecosystems.
Nat Commun. 2020 Jan 16;11(1):309. doi: 10.1038/s41467-019-13986-6.

引用本文的文献

2
Deciphering microbial spatial organization: insights from synthetic and engineered communities.
ISME Commun. 2025 Jun 27;5(1):ycaf107. doi: 10.1093/ismeco/ycaf107. eCollection 2025 Jan.
4
A digital plating platform for robust and versatile microbial detection and analysis.
Sci Rep. 2025 Jul 13;15(1):25301. doi: 10.1038/s41598-025-11525-6.
5
Habitat fragmentation enhances microbial collective defence.
J R Soc Interface. 2025 Feb;22(223):20240611. doi: 10.1098/rsif.2024.0611. Epub 2025 Feb 12.
6
A data-driven modeling framework for mapping genotypes to synthetic microbial community functions.
bioRxiv. 2025 Jan 4:2025.01.04.631316. doi: 10.1101/2025.01.04.631316.
7
Environment-Organism Feedbacks Drive Changes in Ecological Interactions.
Ecol Lett. 2025 Jan;28(1):e70027. doi: 10.1111/ele.70027.
9
Microbial community interactions on a chip.
Proc Natl Acad Sci U S A. 2024 Sep 24;121(39):e2403510121. doi: 10.1073/pnas.2403510121. Epub 2024 Sep 17.
10
Fragmented micro-growth habitats present opportunities for alternative competitive outcomes.
Nat Commun. 2024 Aug 31;15(1):7591. doi: 10.1038/s41467-024-51944-z.

本文引用的文献

1
Quantitative Transformation Efficiency Assay for .
Bio Protoc. 2018 Dec 5;8(23):e3109. doi: 10.21769/BioProtoc.3109.
2
Modelling microbiome recovery after antibiotics using a stability landscape framework.
ISME J. 2019 Jul;13(7):1845-1856. doi: 10.1038/s41396-019-0392-1. Epub 2019 Mar 15.
3
Understanding and Engineering Distributed Biochemical Pathways in Microbial Communities.
Biochemistry. 2019 Jan 15;58(2):94-107. doi: 10.1021/acs.biochem.8b01006. Epub 2018 Nov 20.
4
Recovery of gut microbiota of healthy adults following antibiotic exposure.
Nat Microbiol. 2018 Nov;3(11):1255-1265. doi: 10.1038/s41564-018-0257-9. Epub 2018 Oct 22.
5
Prevalence and patterns of higher-order drug interactions in .
NPJ Syst Biol Appl. 2018 Sep 3;4:31. doi: 10.1038/s41540-018-0069-9. eCollection 2018.
6
Stressor interaction networks suggest antibiotic resistance co-opted from stress responses to temperature.
ISME J. 2019 Jan;13(1):12-23. doi: 10.1038/s41396-018-0241-7. Epub 2018 Aug 31.
7
Cross-feeding modulates antibiotic tolerance in bacterial communities.
ISME J. 2018 Nov;12(11):2723-2735. doi: 10.1038/s41396-018-0212-z. Epub 2018 Jul 10.
8
Designing microbial consortia with defined social interactions.
Nat Chem Biol. 2018 Aug;14(8):821-829. doi: 10.1038/s41589-018-0091-7. Epub 2018 Jun 25.
9
Deciphering microbial interactions in synthetic human gut microbiome communities.
Mol Syst Biol. 2018 Jun 21;14(6):e8157. doi: 10.15252/msb.20178157.
10
Combinatorial drug discovery in nanoliter droplets.
Proc Natl Acad Sci U S A. 2018 Jun 26;115(26):6685-6690. doi: 10.1073/pnas.1802233115. Epub 2018 Jun 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验