School of Mathematical Sciences, Xiamen University, Xiamen 361005, People's Republic of China.
J Phys Condens Matter. 2013 May 15;25(19):195103. doi: 10.1088/0953-8984/25/19/195103. Epub 2013 Apr 4.
For a one-component fluid on a solid substrate, a thermal singularity may occur at the contact line where the liquid-vapor interface intersects the solid surface. Physically, the liquid-vapor interface is almost isothermal at the liquid-vapor coexistence temperature in one-component fluids while the solid surface is almost isothermal for solids of high thermal conductivity. Therefore, a temperature discontinuity is formed if the two isothermal interfaces are of different temperatures and intersect at the contact line. This leads to the so-called thermal singularity. The localized hydrodynamics involving evaporation/condensation near the contact line leads to a contact angle depending on the underlying substrate temperature. This dependence has been shown to lead to the motion of liquid droplets on solid substrates with thermal gradients (Xu and Qian 2012 Phys. Rev. E 85 061603). In the present work, we carry out molecular dynamics (MD) simulations as numerical experiments to further confirm the predictions made from our previous continuum hydrodynamic modeling and simulations, which are actually semi-quantitatively accurate down to the small length scales in the problem. Using MD simulations, we investigate the motion of evaporative droplets in one-component Lennard-Jones fluids confined in nanochannels with thermal gradients. The droplet is found to migrate in the direction of decreasing temperature of solid walls, with a migration velocity linearly proportional to the temperature gradient. This agrees with the prediction of our continuum model. We then measure the effect of droplet size on the droplet motion. It is found that the droplet mobility is inversely proportional to a dimensionless coefficient associated with the total rate of dissipation due to droplet movement. Our results show that this coefficient is of order unity and increases with the droplet size for the small droplets (~10 nm) simulated in the present work. These findings are in semi-quantitative agreement with the predictions of our continuum model. Finally, we measure the effect of liquid-vapor coexistence temperature on the droplet motion. Through a theoretical analysis on the size of the thermal singularity, it can be shown that the droplet mobility decreases with decreasing coexistence temperature. This is observed in our MD simulations.
对于固-液界面相交于固-液界面的固体基底上的单相流体,在接触线处可能会出现热奇异现象。从物理上讲,单相流体中的液-汽界面在液-汽共存温度下几乎是等温的,而高导热率固体的固-液界面几乎也是等温的。因此,如果两个等温界面具有不同的温度并且在接触线处相交,则会形成温度不连续。这导致所谓的热奇异。涉及接触线附近蒸发/冷凝的局部流体动力学导致接触角取决于基础衬底温度。已经表明这种依赖性导致具有热梯度的固体基底上的液滴运动(Xu 和 Qian,2012 年,Phys. Rev. E 85,061603)。在目前的工作中,我们进行分子动力学(MD)模拟作为数值实验,以进一步证实我们以前的连续流体力学建模和模拟的预测,这些预测实际上在问题的小长度尺度上具有半定量的准确性。使用 MD 模拟,我们研究了具有热梯度的纳米通道中单相 Lennard-Jones 流体中蒸发液滴的运动。发现液滴沿壁温降低的方向迁移,迁移速度与温度梯度成正比。这与我们的连续体模型的预测一致。然后,我们测量液滴尺寸对液滴运动的影响。发现液滴迁移率与由于液滴运动引起的总耗散率相关的无量纲系数成反比。我们的结果表明,该系数约为 1,并且对于在当前工作中模拟的小液滴(约 10nm),随着液滴尺寸的增加而增加。这些发现与我们的连续体模型的预测基本一致。最后,我们测量液-汽共存温度对液滴运动的影响。通过对热奇异尺寸的理论分析,可以表明液滴迁移率随共存温度的降低而降低。这在我们的 MD 模拟中得到了观察。