Trisna Beni Adi, Nakareseisoon Nitas, Eiwwongcharoen Win, Panyakeow Somsak, Kanjanachuchai Songphol
Semiconductor Device Research Laboratory, Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University, 254 Phyathai Road, Patumwan, Bangkok, 10330 Thailand.
Nanoscale Res Lett. 2015 Apr 17;10:184. doi: 10.1186/s11671-015-0890-7. eCollection 2015.
Self-running Ga droplets on GaAs (001) surfaces are repeatedly and reliably formed in a molecular beam epitaxial (MBE) chamber despite the lack of real-time imaging capability of a low-energy electron microscope (LEEM) which has so far dominated the syntheses and studies of the running droplets phenomenon. Key to repeatability is the observation and registration of an appropriate reference point upon which subsequent sublimation conditions are based. The reference point is established using reflection high-energy electron diffraction (RHEED), not the noncongruent temperature used in LEEM where temperature discrepancies up to 25°C against MBE is measured. Our approach removes instrumental barriers to the observation and control of this complex dynamical system and may extend the usefulness of many droplet-related processes.
尽管缺乏低能电子显微镜(LEEM)的实时成像能力(迄今为止,LEEM主导了对移动液滴现象的合成与研究),但在分子束外延(MBE)腔室中,GaAs(001)表面上的自驱动Ga液滴仍能反复且可靠地形成。可重复性的关键在于观察并记录一个合适的参考点,后续的升华条件以此为基础。该参考点是通过反射高能电子衍射(RHEED)建立的,而非LEEM中使用的非全等温度,在LEEM中,相对于MBE测量到的温度差异高达25°C。我们的方法消除了观察和控制这个复杂动态系统的仪器障碍,并可能扩展许多与液滴相关过程的实用性。