Suppr超能文献

一种利用下一代测序技术检测差异甲基化基因座的方法。

A method to detect differentially methylated loci with next-generation sequencing.

机构信息

Department of Biostatistics and Epidemiology, Georgia Health Sciences University, Augusta, GA 30912-4900, USA.

出版信息

Genet Epidemiol. 2013 May;37(4):377-82. doi: 10.1002/gepi.21726. Epub 2013 Apr 1.

Abstract

Epigenetic changes, especially DNA methylation at CpG loci have important implications in cancer and other complex diseases. With the development of next-generation sequencing (NGS), it is feasible to generate data to interrogate the difference in methylation status for genome-wide loci using case-control design. However, a proper and efficient statistical test is lacking. There are several challenges. First, unlike methylation experiments using microarrays, where there is one measure of methylation for one individual at a particular CpG site, here we have the counts of methylation allele and unmethylation allele for each individual. Second, due to the nature of sample preparation, the measured methylation reflects the methylation status of a mixture of cells involved in sample preparation. Therefore, the underlying distribution of the measured methylation level is unknown, and a robust test is more desirable than parametric approach. Third, currently NGS measures methylation at over 2 million CpG sites. Any statistical tests have to be computationally efficient in order to be applied to the NGS data. Taking these challenges into account, we propose a test for differential methylation based on clustered data analysis by modeling the methylation counts. We performed simulations to show that it is robust under several distributions for the measured methylation levels. It has good power and is computationally efficient. Finally, we apply the test to our NGS data on chronic lymphocytic leukemia. The results indicate that it is a promising and practical test.

摘要

表观遗传变化,尤其是 CpG 位点的 DNA 甲基化,在癌症和其他复杂疾病中具有重要意义。随着下一代测序(NGS)的发展,使用病例对照设计生成用于全基因组位点甲基化状态差异的询问数据是可行的。然而,缺乏适当和有效的统计检验方法。这存在几个挑战。首先,与使用微阵列的甲基化实验不同,在微阵列中,一个个体在特定的 CpG 位点只有一个甲基化测量值,而在这里,我们有每个个体的甲基化等位基因和非甲基化等位基因的计数。其次,由于样本制备的性质,测量的甲基化反映了参与样本制备的混合细胞的甲基化状态。因此,测量的甲基化水平的基础分布是未知的,更需要稳健的检验而不是参数方法。第三,目前 NGS 测量了超过 200 万个 CpG 位点的甲基化。任何统计检验都必须在计算上有效,以便应用于 NGS 数据。考虑到这些挑战,我们提出了一种基于聚类数据分析的差异甲基化检验方法,通过对甲基化计数进行建模。我们进行了模拟,表明在几种测量甲基化水平的分布下,它是稳健的。它具有良好的功效和计算效率。最后,我们将该检验应用于我们的慢性淋巴细胞白血病 NGS 数据。结果表明,这是一种有前途和实用的检验方法。

相似文献

10
Differential methylation tests of regulatory regions.调控区域的差异甲基化检测
Stat Appl Genet Mol Biol. 2016 Jun 1;15(3):237-51. doi: 10.1515/sagmb-2015-0037.

引用本文的文献

本文引用的文献

3
Distinct DNA methylomes of newborns and centenarians.新生儿和百岁老人的独特 DNA 甲基组。
Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):10522-7. doi: 10.1073/pnas.1120658109. Epub 2012 Jun 11.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验