Suppr超能文献

在独立运动物体的情况下,根据光流对航向和路径感知进行建模。

Modeling heading and path perception from optic flow in the case of independently moving objects.

作者信息

Raudies Florian, Neumann Heiko

机构信息

Center for Computational Neuroscience and Neural Technology, Boston University Boston, MA, USA ; Center of Excellence for Learning in Education, Science, and Technology, Boston University Boston, MA, USA.

出版信息

Front Behav Neurosci. 2013 Apr 1;7:23. doi: 10.3389/fnbeh.2013.00023. eCollection 2013.

Abstract

Humans are usually accurate when estimating heading or path from optic flow, even in the presence of independently moving objects (IMOs) in an otherwise rigid scene. To invoke significant biases in perceived heading, IMOs have to be large and obscure the focus of expansion (FOE) in the image plane, which is the point of approach. For the estimation of path during curvilinear self-motion no significant biases were found in the presence of IMOs. What makes humans robust in their estimation of heading or path using optic flow? We derive analytical models of optic flow for linear and curvilinear self-motion using geometric scene models. Heading biases of a linear least squares method, which builds upon these analytical models, are large, larger than those reported for humans. This motivated us to study segmentation cues that are available from optic flow. We derive models of accretion/deletion, expansion/contraction, acceleration/deceleration, local spatial curvature, and local temporal curvature, to be used as cues to segment an IMO from the background. Integrating these segmentation cues into our method of estimating heading or path now explains human psychophysical data and extends, as well as unifies, previous investigations. Our analysis suggests that various cues available from optic flow help to segment IMOs and, thus, make humans' heading and path perception robust in the presence of such IMOs.

摘要

即使在原本刚性的场景中存在独立移动的物体(IMO),人类在根据光流估计航向或路径时通常也是准确的。为了在感知航向上引发显著偏差,IMO必须很大且遮挡图像平面中的扩张焦点(FOE),即接近点。对于曲线自身运动过程中的路径估计,在存在IMO的情况下未发现显著偏差。是什么让人类在使用光流估计航向或路径时如此稳健?我们使用几何场景模型推导了线性和曲线自身运动的光流分析模型。基于这些分析模型的线性最小二乘法的航向偏差很大,比报道的人类偏差还要大。这促使我们研究可从光流中获得的分割线索。我们推导了积聚/删除、扩张/收缩、加速/减速、局部空间曲率和局部时间曲率的模型,用作从背景中分割IMO的线索。将这些分割线索整合到我们估计航向或路径的方法中,现在可以解释人类心理物理学数据,并扩展和统一了先前的研究。我们的分析表明,光流中可用的各种线索有助于分割IMO,从而使人类在存在此类IMO的情况下对航向和路径的感知更加稳健。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a78/3612589/a7992afe7502/fnbeh-07-00023-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验