Suppr超能文献

物体识别中的反复处理。

Recurrent Processing during Object Recognition.

机构信息

Department of Psychology and Neuroscience, University of Colorado Boulder Boulder, CO, USA ; eCortex, Inc. Boulder, CO, USA.

出版信息

Front Psychol. 2013 Apr 1;4:124. doi: 10.3389/fpsyg.2013.00124. eCollection 2013.

Abstract

How does the brain learn to recognize objects visually, and perform this difficult feat robustly in the face of many sources of ambiguity and variability? We present a computational model based on the biology of the relevant visual pathways that learns to reliably recognize 100 different object categories in the face of naturally occurring variability in location, rotation, size, and lighting. The model exhibits robustness to highly ambiguous, partially occluded inputs. Both the unified, biologically plausible learning mechanism and the robustness to occlusion derive from the role that recurrent connectivity and recurrent processing mechanisms play in the model. Furthermore, this interaction of recurrent connectivity and learning predicts that high-level visual representations should be shaped by error signals from nearby, associated brain areas over the course of visual learning. Consistent with this prediction, we show how semantic knowledge about object categories changes the nature of their learned visual representations, as well as how this representational shift supports the mapping between perceptual and conceptual knowledge. Altogether, these findings support the potential importance of ongoing recurrent processing throughout the brain's visual system and suggest ways in which object recognition can be understood in terms of interactions within and between processes over time.

摘要

大脑如何学会通过视觉识别物体,并在面对多种模糊和变化源时稳健地完成这一艰巨任务?我们提出了一个基于相关视觉通路生物学的计算模型,该模型能够在位置、旋转、大小和光照等方面的自然变化情况下,可靠地识别 100 种不同的物体类别。该模型对高度模糊和部分遮挡的输入具有鲁棒性。统一的、具有生物学意义的学习机制和对遮挡的鲁棒性都源于模型中递归连接和递归处理机制的作用。此外,这种递归连接和学习的相互作用预测,在视觉学习过程中,来自附近相关大脑区域的错误信号应该会影响高级视觉表示。与这一预测一致,我们展示了语义知识如何改变物体类别的学习视觉表示的性质,以及这种表示的转变如何支持感知和概念知识之间的映射。总的来说,这些发现支持了大脑视觉系统中持续的递归处理的潜在重要性,并提出了从时间内的相互作用的角度理解物体识别的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b15/3612699/4bd402beeac5/fpsyg-04-00124-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验