Suppr超能文献

视听生物反馈可提高运动预测准确性。

Audiovisual biofeedback improves motion prediction accuracy.

机构信息

Radiation Physics Laboratory, Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia.

出版信息

Med Phys. 2013 Apr;40(4):041705. doi: 10.1118/1.4794497.

Abstract

PURPOSE

The accuracy of motion prediction, utilized to overcome the system latency of motion management radiotherapy systems, is hampered by irregularities present in the patients' respiratory pattern. Audiovisual (AV) biofeedback has been shown to reduce respiratory irregularities. The aim of this study was to test the hypothesis that AV biofeedback improves the accuracy of motion prediction.

METHODS

An AV biofeedback system combined with real-time respiratory data acquisition and MR images were implemented in this project. One-dimensional respiratory data from (1) the abdominal wall (30 Hz) and (2) the thoracic diaphragm (5 Hz) were obtained from 15 healthy human subjects across 30 studies. The subjects were required to breathe with and without the guidance of AV biofeedback during each study. The obtained respiratory signals were then implemented in a kernel density estimation prediction algorithm. For each of the 30 studies, five different prediction times ranging from 50 to 1400 ms were tested (150 predictions performed). Prediction error was quantified as the root mean square error (RMSE); the RMSE was calculated from the difference between the real and predicted respiratory data. The statistical significance of the prediction results was determined by the Student's t-test.

RESULTS

Prediction accuracy was considerably improved by the implementation of AV biofeedback. Of the 150 respiratory predictions performed, prediction accuracy was improved 69% (103/150) of the time for abdominal wall data, and 78% (117/150) of the time for diaphragm data. The average reduction in RMSE due to AV biofeedback over unguided respiration was 26% (p < 0.001) and 29% (p < 0.001) for abdominal wall and diaphragm respiratory motion, respectively.

CONCLUSIONS

This study was the first to demonstrate that the reduction of respiratory irregularities due to the implementation of AV biofeedback improves prediction accuracy. This would result in increased efficiency of motion management techniques affected by system latencies used in radiotherapy.

摘要

目的

运动预测的准确性受到患者呼吸模式不规则性的限制,运动管理放射治疗系统利用运动预测来克服这一限制。视听(AV)生物反馈已被证明可以减少呼吸不规则性。本研究旨在检验以下假设,即 AV 生物反馈可提高运动预测的准确性。

方法

本项目中实施了一种视听生物反馈系统,该系统结合了实时呼吸数据采集和磁共振成像。从 15 名健康人体受试者的 30 项研究中获得了(1)腹壁(30 Hz)和(2)膈肌(5 Hz)的一维呼吸数据。要求受试者在每项研究中都在有和没有视听生物反馈指导的情况下进行呼吸。然后将获得的呼吸信号应用于核密度估计预测算法中。对于 30 项研究中的每一项,测试了从 50 到 1400 ms 的五个不同预测时间(进行了 150 次预测)。通过将真实和预测的呼吸数据之间的差异来量化预测误差,即均方根误差(RMSE)。通过学生 t 检验确定预测结果的统计学意义。

结果

通过实施视听生物反馈,预测准确性得到了显著提高。在进行的 150 次呼吸预测中,腹壁数据的预测准确率提高了 69%(103/150),膈肌数据的预测准确率提高了 78%(117/150)。由于实施视听生物反馈,与无指导呼吸相比,腹壁和膈肌呼吸运动的 RMSE 平均分别降低了 26%(p < 0.001)和 29%(p < 0.001)。

结论

本研究首次证明,由于实施视听生物反馈而减少的呼吸不规则性可提高预测准确性。这将提高受放射治疗中系统延迟影响的运动管理技术的效率。

相似文献

1
Audiovisual biofeedback improves motion prediction accuracy.
Med Phys. 2013 Apr;40(4):041705. doi: 10.1118/1.4794497.
2
Audiovisual biofeedback improves diaphragm motion reproducibility in MRI.
Med Phys. 2012 Nov;39(11):6921-8. doi: 10.1118/1.4761866.
4
The internal-external respiratory motion correlation is unaffected by audiovisual biofeedback.
Australas Phys Eng Sci Med. 2014 Mar;37(1):97-102. doi: 10.1007/s13246-014-0247-z. Epub 2014 Feb 8.
5
Audiovisual biofeedback improves the correlation between internal/external surrogate motion and lung tumor motion.
Med Phys. 2018 Mar;45(3):1009-1017. doi: 10.1002/mp.12758. Epub 2018 Feb 19.
7
The impact of audio-visual biofeedback on 4D PET images: results of a phantom study.
Med Phys. 2012 Feb;39(2):1046-57. doi: 10.1118/1.3679012.
8
Motion management within two respiratory-gating windows: feasibility study of dual quasi-breath-hold technique in gated medical procedures.
Phys Med Biol. 2014 Nov 7;59(21):6583-94. doi: 10.1088/0031-9155/59/21/6583. Epub 2014 Oct 16.
9
Audiovisual Biofeedback Improves Cine-Magnetic Resonance Imaging Measured Lung Tumor Motion Consistency.
Int J Radiat Oncol Biol Phys. 2016 Mar 1;94(3):628-36. doi: 10.1016/j.ijrobp.2015.11.017. Epub 2015 Nov 18.

引用本文的文献

1
Real-time prediction of tumor motion using a dynamic neural network.
Med Biol Eng Comput. 2020 Mar;58(3):529-539. doi: 10.1007/s11517-019-02096-6. Epub 2020 Jan 8.
3
Effects of audio coaching and visual feedback on the stability of respiration during radiotherapy.
Jpn J Radiol. 2016 Aug;34(8):572-8. doi: 10.1007/s11604-016-0560-4. Epub 2016 Jun 17.
4
5
Amplitude gating for a coached breathing approach in respiratory gated 10 MV flattening filter-free VMAT delivery.
J Appl Clin Med Phys. 2015 Jul 8;16(4):78–90. doi: 10.1120/jacmp.v16i4.5350.
9
A time-varying seasonal autoregressive model-based prediction of respiratory motion for tumor following radiotherapy.
Comput Math Methods Med. 2013;2013:390325. doi: 10.1155/2013/390325. Epub 2013 Jun 10.

本文引用的文献

1
Audiovisual biofeedback improves diaphragm motion reproducibility in MRI.
Med Phys. 2012 Nov;39(11):6921-8. doi: 10.1118/1.4761866.
2
The impact of audio-visual biofeedback on 4D PET images: results of a phantom study.
Med Phys. 2012 Feb;39(2):1046-57. doi: 10.1118/1.3679012.
3
Online image-based monitoring of soft-tissue displacements for radiation therapy of the prostate.
Int J Radiat Oncol Biol Phys. 2012 Aug 1;83(5):1633-40. doi: 10.1016/j.ijrobp.2011.10.049. Epub 2012 Jan 26.
6
Detailed analysis of latencies in image-based dynamic MLC tracking.
Med Phys. 2010 Sep;37(9):4998-5005. doi: 10.1118/1.3480504.
7
Electromagnetic-guided dynamic multileaf collimator tracking enables motion management for intensity-modulated arc therapy.
Int J Radiat Oncol Biol Phys. 2011 Jan 1;79(1):312-20. doi: 10.1016/j.ijrobp.2010.03.011. Epub 2010 Jul 7.
8
Tumor motion prediction with the diaphragm as a surrogate: a feasibility study.
Phys Med Biol. 2010 May 7;55(9):N221-9. doi: 10.1088/0031-9155/55/9/N01. Epub 2010 Apr 6.
9
Radiation dose-volume effects in the lung.
Int J Radiat Oncol Biol Phys. 2010 Mar 1;76(3 Suppl):S70-6. doi: 10.1016/j.ijrobp.2009.06.091.
10
Kernel density estimation-based real-time prediction for respiratory motion.
Phys Med Biol. 2010 Mar 7;55(5):1311-26. doi: 10.1088/0031-9155/55/5/004. Epub 2010 Feb 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验