Joint Department of Physics, Division of Radiotherapy and Imaging, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT, United Kingdom.
Med Phys. 2013 Apr;40(4):041905. doi: 10.1118/1.4794485.
Monte Carlo methods based on the Boltzmann transport equation (BTE) have previously been used to model light transport in powdered-phosphor scintillator screens. Physically motivated guesses or, alternatively, the complexities of Mie theory have been used by some authors to provide the necessary inputs of transport parameters. The purpose of Part II of this work is to: (i) validate predictions of modulation transform function (MTF) using the BTE and calculated values of transport parameters, against experimental data published for two Gd2O2S:Tb screens; (ii) investigate the impact of size-distribution and emission spectrum on Mie predictions of transport parameters; (iii) suggest simpler and novel geometrical optics-based models for these parameters and compare to the predictions of Mie theory. A computer code package called phsphr is made available that allows the MTF predictions for the screens modeled to be reproduced and novel screens to be simulated.
The transport parameters of interest are the scattering efficiency (Q sct), absorption efficiency (Q abs), and the scatter anisotropy (g). Calculations of these parameters are made using the analytic method of Mie theory, for spherical grains of radii 0.1-5.0 μm. The sensitivity of the transport parameters to emission wavelength is investigated using an emission spectrum representative of that of Gd2O2S:Tb. The impact of a grain-size distribution in the screen on the parameters is investigated using a Gaussian size-distribution (σ = 1%, 5%, or 10% of mean radius). Two simple and novel alternative models to Mie theory are suggested: a geometrical optics and diffraction model (GODM) and an extension of this (GODM+). Comparisons to measured MTF are made for two commercial screens: Lanex Fast Back and Lanex Fast Front (Eastman Kodak Company, Inc.).
The Mie theory predictions of transport parameters were shown to be highly sensitive to both grain size and emission wavelength. For a phosphor screen structure with a distribution in grain sizes and a spectrum of emission, only the average trend of Mie theory is likely to be important. This average behavior is well predicted by the more sophisticated of the geometrical optics models (GODM+) and in approximate agreement for the simplest (GODM). The root-mean-square differences obtained between predicted MTF and experimental measurements, using all three models (GODM, GODM+, Mie), were within 0.03 for both Lanex screens in all cases. This is excellent agreement in view of the uncertainties in screen composition and optical properties.
If Mie theory is used for calculating transport parameters for light scattering and absorption in powdered-phosphor screens, care should be taken to average out the fine-structure in the parameter predictions. However, for visible emission wavelengths (λ < 1.0 μm) and grain radii (a > 0.5 μm), geometrical optics models for transport parameters are an alternative to Mie theory. These geometrical optics models are simpler and lead to no substantial loss in accuracy.
基于玻尔兹曼输运方程(BTE)的蒙特卡罗方法以前曾被用于模拟粉末磷光体闪烁屏中的光传输。一些作者使用物理上有根据的猜测或米氏理论的复杂性来提供必要的输运参数输入。这项工作的第二部分的目的是:(i)使用 BTE 和计算出的输运参数值,验证调制传递函数(MTF)的预测结果,以与为两种 Gd2O2S:Tb 屏幕发布的实验数据相对照;(ii)研究尺寸分布和发射光谱对米氏理论预测输运参数的影响;(iii)为这些参数提出更简单和新颖的基于几何光学的模型,并与米氏理论的预测进行比较。提供了一个名为 phsphr 的计算机代码包,允许对模拟的屏幕进行 MTF 预测,并可以模拟新的屏幕。
感兴趣的输运参数是散射效率(Q sct)、吸收效率(Q abs)和散射各向异性(g)。使用米氏理论的解析方法计算这些参数,对于半径为 0.1-5.0μm 的球形颗粒。使用代表 Gd2O2S:Tb 发射光谱的发射光谱研究了这些参数对发射波长的敏感性。使用屏幕中的粒度分布的高斯分布(σ = 1%、5%或 10%的平均半径)研究了屏幕上的粒度分布对参数的影响。提出了两种替代米氏理论的简单而新颖的模型:几何光学和衍射模型(GODM)以及对此模型的扩展(GODM+)。对两种商业屏幕:Lanex Fast Back 和 Lanex Fast Front(Eastman Kodak Company,Inc.)进行了与测量 MTF 的比较。
表明,米氏理论对颗粒尺寸和发射波长都非常敏感。对于具有颗粒尺寸分布和发射光谱的磷光体屏幕结构,米氏理论的平均趋势可能是唯一重要的。更复杂的几何光学模型(GODM+)很好地预测了这种平均行为,而最简单的模型(GODM)在近似情况下也是如此。使用所有三种模型(GODM、GODM+、Mie),在所有情况下,预测 MTF 和实验测量之间的均方根差异都在 Lanex 两个屏幕的 0.03 以内。考虑到屏幕组成和光学特性的不确定性,这是极好的一致性。
如果米氏理论用于计算粉末磷光体屏幕中光散射和吸收的输运参数,则应注意对参数预测中的细结构进行平均处理。但是,对于可见发射波长(λ<1.0μm)和颗粒半径(a>0.5μm),用于输运参数的几何光学模型是米氏理论的替代方法。这些几何光学模型更简单,并且不会导致精度有实质性损失。