Suppr超能文献

使用交错连续波和射频脉冲辐照设计生物固态 NMR 的偶极重聚和解耦实验。

Designing dipolar recoupling and decoupling experiments for biological solid-state NMR using interleaved continuous wave and RF pulse irradiation.

机构信息

Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University , Denmark.

出版信息

Acc Chem Res. 2013 Sep 17;46(9):2098-107. doi: 10.1021/ar300329g. Epub 2013 Apr 4.

Abstract

Rapid developments in solid-state NMR methodology have boosted this technique into a highly versatile tool for structural biology. The invention of increasingly advanced rf pulse sequences that take advantage of better hardware and sample preparation have played an important part in these advances. In the development of these new pulse sequences, researchers have taken advantage of analytical tools, such as average Hamiltonian theory or lately numerical methods based on optimal control theory. In this Account, we focus on the interplay between these strategies in the systematic development of simple pulse sequences that combines continuous wave (CW) irradiation with short pulses to obtain improved rf pulse, recoupling, sampling, and decoupling performance. Our initial work on this problem focused on the challenges associated with the increasing use of fully or partly deuterated proteins to obtain high-resolution, liquid-state-like solid-state NMR spectra. Here we exploit the overwhelming presence of (2)H in such samples as a source of polarization and to gain structural information. The (2)H nuclei possess dominant quadrupolar couplings which complicate even the simplest operations, such as rf pulses and polarization transfer to surrounding nuclei. Using optimal control and easy analytical adaptations, we demonstrate that a series of rotor synchronized short pulses may form the basis for essentially ideal rf pulse performance. Using similar approaches, we design (2)H to (13)C polarization transfer experiments that increase the efficiency by one order of magnitude over standard cross polarization experiments. We demonstrate how we can translate advanced optimal control waveforms into simple interleaved CW and rf pulse methods that form a new cross polarization experiment. This experiment significantly improves (1)H-(15)N and (15)N-(13)C transfers, which are key elements in the vast majority of biological solid-state NMR experiments. In addition, we demonstrate how interleaved sampling of spectra exploiting polarization from (1)H and (2)H nuclei can substantially enhance the sensitivity of such experiments. Finally, we present systematic development of (1)H decoupling methods where CW irradiation of moderate amplitude is interleaved with strong rotor-synchronized refocusing pulses. We show that these sequences remove residual cross terms between dipolar coupling and chemical shielding anisotropy more effectively and improve the spectral resolution over that observed in current state-of-the-art methods.

摘要

固态 NMR 方法的快速发展将该技术提升为结构生物学的一种多功能工具。越来越先进的射频脉冲序列的发明,利用更好的硬件和样品制备,在这些进展中发挥了重要作用。在这些新脉冲序列的发展过程中,研究人员利用了分析工具,如平均哈密顿理论或最近基于最优控制理论的数值方法。在这个账户中,我们专注于这些策略之间的相互作用,在系统地开发简单的脉冲序列,该序列将连续波(CW)辐照与短脉冲结合起来,以获得改进的射频脉冲、再耦联、采样和去耦性能。我们在这个问题上的初步工作集中在与越来越多地使用完全或部分氘代蛋白质获得高分辨率、液态类似的固态 NMR 谱相关的挑战上。在这里,我们利用这些样品中大量存在的 (2)H 作为极化的来源,并获得结构信息。(2)H 核具有主导的四极偶合,即使是最简单的操作,如射频脉冲和极化转移到周围核,也会使操作复杂化。使用最优控制和简单的分析适应性,我们证明了一系列转子同步短脉冲可以作为基本理想射频脉冲性能的基础。使用类似的方法,我们设计 (2)H 到 (13)C 极化转移实验,将效率提高一个数量级,超过标准的交叉极化实验。我们展示了如何将先进的最优控制波形转化为简单的交错 CW 和射频脉冲方法,形成新的交叉极化实验。这个实验显著提高了 (1)H-(15)N 和 (15)N-(13)C 的转移,这是绝大多数生物固态 NMR 实验的关键元素。此外,我们还展示了如何利用 (1)H 和 (2)H 核的极化交错采样来极大地提高这些实验的灵敏度。最后,我们提出了 (1)H 去耦方法的系统发展,其中中等幅度的 CW 辐照与强转子同步重聚焦脉冲交错。我们表明,这些序列比当前最先进的方法更有效地去除偶极耦合和化学屏蔽各向异性之间的残余交叉项,并提高了光谱分辨率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验