Tošner Zdeněk, Brandl Matthias J, Blahut Jan, Glaser Steffen J, Reif Bernd
Department of Chemistry, Faculty of Science, Charles University, Albertov 6, 12842 Prague, Czech Republic.
Bayerisches NMR Zentrum (BNMRZ) at Department Chemie, Technische Universität München (TUM), 85747 Garching, Germany.
Sci Adv. 2021 Oct 15;7(42):eabj5913. doi: 10.1126/sciadv.abj5913. Epub 2021 Oct 13.
Dipolar recoupling is a central concept in the nuclear magnetic resonance spectroscopy of powdered solids and is used to establish correlations between different nuclei by magnetization transfer. The efficiency of conventional cross-polarization methods is low because of the inherent radio frequency (rf) field inhomogeneity present in the magic angle spinning (MAS) experiments and the large chemical shift anisotropies at high magnetic fields. Very high transfer efficiencies can be obtained using optimal control–derived experiments. These sequences had to be optimized individually for a particular MAS frequency. We show that by adjusting the length and the rf field amplitude of the shaped pulse synchronously with sample rotation, optimal control sequences can be successfully applied over a range of MAS frequencies without the need of reoptimization. This feature greatly enhances their applicability on spectrometers operating at differing external fields where the MAS frequency needs to be adjusted to avoid detrimental resonance effects.
偶极重耦合是粉末状固体核磁共振光谱学中的一个核心概念,用于通过磁化转移建立不同原子核之间的相关性。由于魔角旋转(MAS)实验中固有的射频(rf)场不均匀性以及高磁场下的大化学位移各向异性,传统交叉极化方法的效率较低。使用基于最优控制的实验可以获得非常高的转移效率。这些序列必须针对特定的MAS频率进行单独优化。我们表明,通过与样品旋转同步调整成形脉冲的长度和射频场幅度,最优控制序列可以成功应用于一系列MAS频率,而无需重新优化。这一特性大大提高了它们在不同外部场强下运行的光谱仪上的适用性,在这些光谱仪上需要调整MAS频率以避免有害的共振效应。