Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva 4, Switzerland.
Mol Imaging Biol. 2013 Oct;15(5):542-51. doi: 10.1007/s11307-013-0632-0.
Positron emission tomography (PET) is a powerful tool in small animal research, enabling noninvasive quantitative imaging of biochemical processes in living subjects. However, the dosimetric characteristics of small animal PET imaging are usually overlooked, although the radiation dose may be significant. The variations of anatomical characteristics between the various computational models may result in differences in the dosimetric outcome.
We used five different anatomical rat models (two stylized and three voxel based) to compare calculated absorbed fractions and S values for eight positron-emitting radionuclides (C-11, N-13, O-15, F-18, Cu-64, Ga-68, Y-86, and I-124) commonly used to label various probes for small animal PET imaging. The MCNPX radiation transport code was used for radiation dose calculations.
For most source/target organ pairs, O-15 and Ga-68 produce the highest self-absorbed S values because of the high-energy and high-frequency of positron emissions, while Y-86 produces the highest cross-absorbed S values because of the high energy and high frequency of γ-rays emission. Anatomical models produced from different rat strains or modeling techniques exhibit different organ masses, volumes, and thus give rise to different S values and absorbed dose. The variations of absorbed fractions between models of the same type are less than those between models with different types. The calculated S values depend strongly on organ mass, and as such, different models produce similar S values for organs of comparable masses. In most source organs presenting with high cumulated activity, the absorbed dose is less affected by model difference compared with other organs.
The produced S values for common positron-emitting radionuclides can be exploited in the assessment of radiation dose to rats from different radiotracers used in small animal PET experiments. This work contributes to a better understanding of the influence of different computational models on small animal dosimetry.
正电子发射断层扫描(PET)是小动物研究中的一种强大工具,能够对活体生物体内的生化过程进行非侵入性定量成像。然而,尽管辐射剂量可能很大,但小动物 PET 成像的剂量学特征通常被忽视。由于各种计算模型的解剖特征存在差异,因此剂量学结果也可能存在差异。
我们使用五种不同的大鼠解剖模型(两种简化模型和三种体素模型)来比较八种常用的小动物 PET 成像示踪剂(C-11、N-13、O-15、F-18、Cu-64、Ga-68、Y-86 和 I-124)的计算吸收分数和 S 值。我们使用 MCNPX 辐射输运代码进行辐射剂量计算。
对于大多数源/靶器官对,由于正电子发射的高能和高频,O-15 和 Ga-68 产生的自吸收 S 值最高,而 Y-86 产生的交叉吸收 S 值最高,因为 γ射线发射的能量和频率都很高。由不同大鼠品系或建模技术产生的解剖模型具有不同的器官质量、体积,因此会产生不同的 S 值和吸收剂量。同一类型模型之间的吸收分数变化小于不同类型模型之间的变化。S 值的计算强烈依赖于器官质量,因此对于具有相似质量的器官,不同模型会产生相似的 S 值。在大多数累积活动较高的源器官中,与其他器官相比,模型差异对吸收剂量的影响较小。
对于常见的正电子发射放射性核素,产生的 S 值可用于评估小动物 PET 实验中不同放射性示踪剂对大鼠的辐射剂量。这项工作有助于更好地了解不同计算模型对小动物剂量学的影响。