Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
Cell Rep. 2013 Apr 25;3(4):1093-104. doi: 10.1016/j.celrep.2013.03.014. Epub 2013 Apr 4.
DNA sequence is a major determinant of the binding specificity of transcription factors (TFs) for their genomic targets. However, eukaryotic cells often express, at the same time, TFs with highly similar DNA binding motifs but distinct in vivo targets. Currently, it is not well understood how TFs with seemingly identical DNA motifs achieve unique specificities in vivo. Here, we used custom protein-binding microarrays to analyze TF specificity for putative binding sites in their genomic sequence context. Using yeast TFs Cbf1 and Tye7 as our case studies, we found that binding sites of these bHLH TFs (i.e., E-boxes) are bound differently in vitro and in vivo, depending on their genomic context. Computational analyses suggest that nucleotides outside E-box binding sites contribute to specificity by influencing the three-dimensional structure of DNA binding sites. Thus, the local shape of target sites might play a widespread role in achieving regulatory specificity within TF families.
DNA 序列是转录因子(TFs)与其基因组靶标结合特异性的主要决定因素。然而,真核细胞通常同时表达具有高度相似 DNA 结合基序但体内靶标不同的 TFs。目前,人们还不太清楚具有相似 DNA 基序的 TFs 如何在体内实现独特的特异性。在这里,我们使用定制的蛋白质结合微阵列来分析 TF 对其基因组序列背景中假定结合位点的特异性。使用酵母 TFs Cbf1 和 Tye7 作为我们的案例研究,我们发现这些 bHLH TFs 的结合位点(即 E 盒)在体外和体内的结合方式不同,这取决于它们的基因组背景。计算分析表明,E 盒结合位点之外的核苷酸通过影响 DNA 结合位点的三维结构有助于特异性。因此,靶位点的局部形状可能在 TF 家族内实现调控特异性方面发挥广泛作用。