Suppr超能文献

亚利桑那州砷污染地区采矿场附近的家庭园艺:通过摄入家庭花园蔬菜、土壤和水来评估砷暴露剂量和风险。

Home gardening near a mining site in an arsenic-endemic region of Arizona: assessing arsenic exposure dose and risk via ingestion of home garden vegetables, soils, and water.

机构信息

Soil, Water and Environmental Science Department, The University of Arizona, Tucson, Arizona 85721, USA.

出版信息

Sci Total Environ. 2013 Jun 1;454-455:373-82. doi: 10.1016/j.scitotenv.2013.02.063. Epub 2013 Apr 3.

Abstract

The human-health risk posed by gardening near a legacy mine and smelter in an arsenic-endemic region of Arizona was characterized in this study. Residential soils were used in a greenhouse study to grow common vegetables, and local residents, after training, collected soil, water, and vegetables samples from their home gardens. Concentrations of arsenic measured in water, soil, and vegetable samples were used in conjunction with reported US intake rates to calculate the daily dose, Incremental Excess Lifetime Cancer Risk (IELCR), and Hazard Quotient for arsenic. Relative arsenic intake dose decreased in order: water>garden soils>homegrown vegetables, and on average, each accounted for 77, 16, and 7% of a residential gardener's daily arsenic intake dose. The IELCR ranges for vegetables, garden soils, and water were 10(-8) to 10(-4), 10(-6) to 10(-4), and 10(-5) to 10(-2), respectively. All vegetables (greenhouse and home garden) were grouped by scientific family, and the risk posed decreased as: Asteraceae≫Fabaceae>Amaranthaceae>Liliaceae>Brassicaceae>Solanaceae≫Cucurbitaceae. Correlations observed between concentrations of arsenic in vegetables and soils were used to estimate a maximum allowable level of arsenic in soil to limit the excess cancer risk to 10(-6). The estimated values are 1.56 mg kg(-1), 5.39 mg kg(-1), 11.6 mg kg(-1) and 12.4 mg kg(-1) for the Asteraceae, Brassicaceae, Fabaceae, and Amaranthaceae families, respectively. It is recommended that home gardeners: sample their private wells annually, test their soils prior to gardening, and, if necessary, modify their gardening behavior to reduce incidental soil ingestion. This study highlights the importance of site-specific risk assessment, and the need for species-specific planting guidelines for communities.

摘要

本研究旨在描述亚利桑那州一个砷污染地区,紧邻遗留矿和冶炼厂的园艺活动对人类健康的风险。在温室研究中使用住宅土壤种植常见蔬菜,经过培训的当地居民从自家花园采集土壤、水和蔬菜样本。水、土壤和蔬菜样本中测量的砷浓度与报告的美国摄入量一起用于计算日剂量、增量终生癌症风险(IELCR)和砷危害系数。砷的相对摄入剂量依次递减:水>花园土壤>自家种植的蔬菜,平均而言,这三种途径分别占居民园丁日常砷摄入量的 77%、16%和 7%。蔬菜、花园土壤和水的 IELCR 范围分别为 10(-8)至 10(-4)、10(-6)至 10(-4)和 10(-5)至 10(-2)。所有蔬菜(温室和自家花园)按科学家族分组,风险降低的顺序为:菊科≫豆科>苋科>百合科>十字花科>茄科>葫芦科。观察到蔬菜和土壤中砷浓度之间的相关性用于估计土壤中砷的最大允许水平,以将超额癌症风险限制在 10(-6)。对于菊科、十字花科、豆科和苋科,估计值分别为 1.56、5.39、11.6 和 12.4 mg kg(-1)。建议自家园丁:每年对私人水井进行采样,在园艺前对土壤进行测试,如果有必要,改变他们的园艺行为以减少偶然的土壤摄入。本研究强调了特定地点风险评估的重要性,以及为社区制定特定物种种植指南的必要性。

相似文献

2
A greenhouse and field-based study to determine the accumulation of arsenic in common homegrown vegetables grown in mining-affected soils.
Sci Total Environ. 2013 Jan 15;443:299-306. doi: 10.1016/j.scitotenv.2012.10.095. Epub 2012 Nov 29.
3
An assessment of health risks associated with arsenic exposure via consumption of homegrown vegetables near contaminated glassworks sites.
Sci Total Environ. 2015 Dec 1;536:189-197. doi: 10.1016/j.scitotenv.2015.07.018. Epub 2015 Jul 21.
6
Ingestion and inhalation of metal(loid)s through preschool gardening: An exposure and risk assessment in legacy mining communities.
Sci Total Environ. 2020 May 20;718:134639. doi: 10.1016/j.scitotenv.2019.134639. Epub 2019 Nov 22.
7
Probabilistic risk assessment of residential exposure to metal(loid)s in a mining impacted community.
Sci Total Environ. 2023 May 10;872:162228. doi: 10.1016/j.scitotenv.2023.162228. Epub 2023 Feb 14.
9
Metal contamination of home garden soils and cultivated vegetables in the province of Brescia, Italy: implications for human exposure.
Sci Total Environ. 2015 Jun 15;518-519:507-17. doi: 10.1016/j.scitotenv.2015.02.072. Epub 2015 Mar 13.
10
Accumulation and potential health risks of cadmium, lead and arsenic in vegetables grown near mining sites in Northern Vietnam.
Environ Monit Assess. 2016 Sep;188(9):525. doi: 10.1007/s10661-016-5535-5. Epub 2016 Aug 20.

引用本文的文献

1
Pollution is ubiquitous: Community-based quantitative human health risk assessment of metal(loid) exposure from contaminated garden plants and soils.
Ecotoxicol Environ Saf. 2025 Jun 15;298:118314. doi: 10.1016/j.ecoenv.2025.118314. Epub 2025 May 17.
2
Nutrients and non-essential metals in darkibor kale grown at urban and rural farms: A pilot study.
PLoS One. 2024 Apr 16;19(4):e0296840. doi: 10.1371/journal.pone.0296840. eCollection 2024.
3
Arsenic in Drinking Water and Diabetes.
Water (Basel). 2023 May 1;15(9). doi: 10.3390/w15091751. Epub 2023 May 2.
4
Backyard aerosol pollution monitors: foliar surfaces, dust enrichment, and factors influencing foliar retention.
Environ Monit Assess. 2023 Sep 13;195(10):1200. doi: 10.1007/s10661-023-11752-2.
5
Probabilistic risk assessment of residential exposure to metal(loid)s in a mining impacted community.
Sci Total Environ. 2023 May 10;872:162228. doi: 10.1016/j.scitotenv.2023.162228. Epub 2023 Feb 14.
6
Metal Lability and Mass Transfer Response to Direct-Planting Phytostabilization of Pyritic Mine Tailings.
Minerals (Basel). 2022 Jun;12(6). doi: 10.3390/min12060757. Epub 2022 Jun 15.
7
Molecular speciation controls arsenic and lead bioaccessibility in fugitive dusts from sulfidic mine tailings.
Environ Sci Process Impacts. 2023 Feb 22;25(2):288-303. doi: 10.1039/d2em00182a.
8
Alleviating Environmental Health Disparities Through Community Science and Data Integration.
Front Sustain Food Syst. 2021 Jun;5. doi: 10.3389/fsufs.2021.620470. Epub 2021 Jun 10.
10
Foliar surfaces as dust and aerosol pollution monitors: An assessment by a mining site.
Sci Total Environ. 2021 Oct 10;790:148164. doi: 10.1016/j.scitotenv.2021.148164. Epub 2021 Jun 1.

本文引用的文献

1
A greenhouse and field-based study to determine the accumulation of arsenic in common homegrown vegetables grown in mining-affected soils.
Sci Total Environ. 2013 Jan 15;443:299-306. doi: 10.1016/j.scitotenv.2012.10.095. Epub 2012 Nov 29.
2
A review on the importance of metals and metalloids in atmospheric dust and aerosol from mining operations.
Sci Total Environ. 2012 Sep 1;433:58-73. doi: 10.1016/j.scitotenv.2012.06.013. Epub 2012 Jul 4.
3
Response of key soil parameters during compost-assisted phytostabilization in extremely acidic tailings: effect of plant species.
Environ Sci Technol. 2012 Jan 17;46(2):1019-27. doi: 10.1021/es202846n. Epub 2012 Jan 6.
4
Getting to the bottom of arsenic standards and guidelines.
Environ Sci Technol. 2010 Jun 15;44(12):4395-9. doi: 10.1021/es9034304.
5
Assessing the health risk of heavy metals in vegetables to the general population in Beijing, China.
J Environ Sci (China). 2009;21(12):1702-9. doi: 10.1016/s1001-0742(08)62476-6.
6
Toxic metal species and food regulations--making a healthy choice.
Analyst. 2007 Jan;132(1):17-20. doi: 10.1039/b610544k. Epub 2006 Dec 4.
7
Inorganic arsenic in cooked rice and vegetables from Bangladeshi households.
Sci Total Environ. 2006 Nov 1;370(2-3):294-301. doi: 10.1016/j.scitotenv.2006.06.010. Epub 2006 Jul 27.
8
Soil arsenic availability and the transfer of soil arsenic to crops in suburban areas in Fujian Province, southeast China.
Sci Total Environ. 2006 Sep 15;368(2-3):531-41. doi: 10.1016/j.scitotenv.2006.03.013. Epub 2006 Apr 19.
9
Human risk assessment of As, Cd, Cu and Zn in the abandoned metal mine site.
Environ Geochem Health. 2005 Apr;27(2):185-91. doi: 10.1007/s10653-005-0131-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验