Ramírez-Andreotta Mónica D, Walls Ramona, Youens-Clark Ken, Blumberg Kai, Isaacs Katherine E, Kaufmann Dorsey, Maier Raina M
Department of Environmental Science, University of Arizona, Tucson, AZ, United States.
Mel and Enid Zuckerman College of Public Health's Division of Community, Environment and Policy, University of Arizona, Tucson, AZ, United States.
Front Sustain Food Syst. 2021 Jun;5. doi: 10.3389/fsufs.2021.620470. Epub 2021 Jun 10.
Environmental contamination is a fundamental determinant of health and well-being, and when the environment is compromised, vulnerabilities are generated. The complex challenges associated with environmental health and food security are influenced by current and emerging political, social, economic, and environmental contexts. To solve these "wicked" dilemmas, disparate public health surveillance efforts are conducted by local, state, and federal agencies. More recently, citizen/community science (CS) monitoring efforts are providing site-specific data. One of the biggest challenges in using these government datasets, let alone incorporating CS data, for a holistic assessment of environmental exposure is data management and interoperability. To facilitate a more holistic perspective and approach to solution generation, we have developed a method to provide a common data model that will allow environmental health researchers working at different scales and research domains to exchange data and ask new questions. We anticipate that this method will help to address environmental health disparities, which are unjust and avoidable, while ensuring CS datasets are ethically integrated to achieve environmental justice. Specifically, we used a transdisciplinary research framework to develop a methodology to integrate CS data with existing governmental environmental monitoring and social attribute data (vulnerability and resilience variables) that span across 10 different federal and state agencies. A key challenge in integrating such different datasets is the lack of widely adopted ontologies for vulnerability and resiliency factors. In addition to following the best practice of submitting new term requests to existing ontologies to fill gaps, we have also created an application ontology, the Superfund Research Project Data Interface Ontology (SRPDIO).
环境污染是健康与福祉的一个基本决定因素,当环境受到损害时,就会产生脆弱性。与环境卫生和粮食安全相关的复杂挑战受到当前及新出现的政治、社会、经济和环境背景的影响。为了解决这些“棘手”的困境,地方、州和联邦机构开展了不同的公共卫生监测工作。最近,公民/社区科学(CS)监测工作正在提供特定地点的数据。在使用这些政府数据集,更不用说纳入CS数据,以全面评估环境暴露方面,最大的挑战之一是数据管理和互操作性。为了促进形成更全面的视角和解决问题的方法,我们开发了一种方法,以提供一个通用数据模型,使不同规模和研究领域的环境卫生研究人员能够交换数据并提出新问题。我们预计,这种方法将有助于解决不公正且可避免的环境卫生差距问题,同时确保CS数据集在伦理上得到整合以实现环境正义。具体而言,我们使用了一个跨学科研究框架来开发一种方法,将CS数据与现有的政府环境监测和社会属性数据(脆弱性和恢复力变量)整合起来,这些数据跨越10个不同的联邦和州机构。整合此类不同数据集的一个关键挑战是缺乏针对脆弱性和恢复力因素的广泛采用的本体。除了遵循向现有本体提交新术语请求以填补空白的最佳做法外,我们还创建了一个应用本体,即超级基金研究项目数据接口本体(SRPDIO)。