Suppr超能文献

[运用数据挖掘决策树分析对老年抑郁症患者特征进行分析]

[Analysis of the characteristics of the older adults with depression using data mining decision tree analysis].

作者信息

Park Myonghwa, Choi Sora, Shin A Mi, Koo Chul Hoi

机构信息

College of Nursing, Chungnam National University, Daejeon, Korea.

出版信息

J Korean Acad Nurs. 2013 Feb;43(1):1-10. doi: 10.4040/jkan.2013.43.1.1.

Abstract

PURPOSE

The purpose of this study was to develop a prediction model for the characteristics of older adults with depression using the decision tree method.

METHODS

A large dataset from the 2008 Korean Elderly Survey was used and data of 14,970 elderly people were analyzed. Target variable was depression and 53 input variables were general characteristics, family & social relationship, economic status, health status, health behavior, functional status, leisure & social activity, quality of life, and living environment. Data were analyzed by decision tree analysis, a data mining technique using SPSS Window 19.0 and Clementine 12.0 programs.

RESULTS

The decision trees were classified into five different rules to define the characteristics of older adults with depression. Classification & Regression Tree (C&RT) showed the best prediction with an accuracy of 80.81% among data mining models. Factors in the rules were life satisfaction, nutritional status, daily activity difficulty due to pain, functional limitation for basic or instrumental daily activities, number of chronic diseases and daily activity difficulty due to disease.

CONCLUSION

The different rules classified by the decision tree model in this study should contribute as baseline data for discovering informative knowledge and developing interventions tailored to these individual characteristics.

摘要

目的

本研究旨在使用决策树方法开发一个针对患有抑郁症的老年人特征的预测模型。

方法

使用了来自2008年韩国老年人调查的一个大型数据集,并对14970名老年人的数据进行了分析。目标变量是抑郁症,53个输入变量包括一般特征、家庭与社会关系、经济状况、健康状况、健康行为、功能状况、休闲与社会活动、生活质量以及生活环境。使用SPSS Window 19.0和Clementine 12.0程序通过决策树分析(一种数据挖掘技术)对数据进行分析。

结果

决策树被分类为五条不同规则以定义患有抑郁症的老年人的特征。在数据挖掘模型中,分类与回归树(C&RT)显示出最佳预测效果,准确率为80.81%。这些规则中的因素包括生活满意度、营养状况、因疼痛导致的日常活动困难、基本或工具性日常活动的功能限制、慢性病数量以及因疾病导致的日常活动困难。

结论

本研究中决策树模型分类的不同规则应作为基础数据,有助于发现信息性知识并开发针对这些个体特征的干预措施。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验