Suppr超能文献

SACICA:一种基于稀疏逼近系数的功能磁共振成像数据分析的独立成分分析模型。

SACICA: a sparse approximation coefficient-based ICA model for functional magnetic resonance imaging data analysis.

机构信息

Digital Image and Intelligent Computation Laboratory, Shanghai Maritime University, Shanghai 201306, China.

出版信息

J Neurosci Methods. 2013 May 30;216(1):49-61. doi: 10.1016/j.jneumeth.2013.03.014. Epub 2013 Apr 4.

Abstract

Independent component analysis (ICA) has been widely used in functional magnetic resonance imaging (fMRI) data to evaluate the functional connectivity, which assumes that the sources of functional networks are statistically independent. Recently, many researchers have demonstrated that sparsity is an effective assumption for fMRI signal separation. In this research, we present a sparse approximation coefficient-based ICA (SACICA) model to analyse fMRI data, which is a promising combination model of sparse features and an ICA technique. The SACICA method consists of three procedures. The wavelet packet decomposition procedure, which decomposes the fMRI data into wavelet tree nodes with different degrees of sparsity, is first. Then, the sparse approximation coefficients set formation procedure, in which an effective Lp norm is proposed to measure the sparse degree of the distinct wavelet tree nodes, is second. The ICA decomposition and reconstruction procedure, which utilises the sparse approximation coefficients set of the fMRI data, is last. The hybrid data experimental results demonstrated that the SACICA method exhibited the stronger spatial source reconstruction ability with respect to the unsmoothed fMRI data and better detection sensitivity of the functional signal on the smoothed fMRI data than the FastICA method. Furthermore, task-related experiments also revealed that SACICA was not only effective in discovering the functional networks but also exhibited a better detection sensitivity of the visual-related functional signal. In addition, the SACICA combined with Fast-FENICA proposed by Wang et al. (2012) was demonstrated to conduct the group analysis effectively on the resting-state data set.

摘要

独立成分分析(ICA)已广泛应用于功能磁共振成像(fMRI)数据中,以评估功能连接,该方法假设功能网络的源在统计上是独立的。最近,许多研究人员已经证明,稀疏性是 fMRI 信号分离的有效假设。在这项研究中,我们提出了一种基于稀疏逼近系数的 ICA(SACICA)模型来分析 fMRI 数据,这是稀疏特征和 ICA 技术的有前途的组合模型。SACICA 方法包括三个步骤。首先是小波包分解过程,该过程将 fMRI 数据分解为具有不同稀疏度的小波树节点。然后,是稀疏逼近系数集形成过程,在该过程中,提出了一种有效的 Lp 范数来衡量不同小波树节点的稀疏度。最后是 ICA 分解和重建过程,利用 fMRI 数据的稀疏逼近系数集。混合数据实验结果表明,与未平滑 fMRI 数据相比,SACICA 方法在空间源重建能力方面表现出更强的能力,在平滑 fMRI 数据上的功能信号检测灵敏度也更好。此外,任务相关实验还表明,SACICA 不仅有效发现功能网络,而且对视觉相关功能信号的检测灵敏度更高。此外,Wang 等人(2012)提出的 SACICA 与 Fast-FENICA 相结合,已被证明可以有效地对静息态数据集进行组分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验