Suppr超能文献

功能磁共振成像(fMRI)数据的模式分类:用于分析空间分布的皮质网络的应用。

Pattern classification of fMRI data: applications for analysis of spatially distributed cortical networks.

机构信息

Department of Psychology, University of South Carolina, Columbia, SC, USA.

Rotman Research Institute, Baycrest Centre, University of Toronto, Toronto, ON, Canada.

出版信息

Neuroimage. 2014 Aug 1;96:117-32. doi: 10.1016/j.neuroimage.2014.03.074. Epub 2014 Apr 4.

Abstract

The field of fMRI data analysis is rapidly growing in sophistication, particularly in the domain of multivariate pattern classification. However, the interaction between the properties of the analytical model and the parameters of the BOLD signal (e.g. signal magnitude, temporal variance and functional connectivity) is still an open problem. We addressed this problem by evaluating a set of pattern classification algorithms on simulated and experimental block-design fMRI data. The set of classifiers consisted of linear and quadratic discriminants, linear support vector machine, and linear and nonlinear Gaussian naive Bayes classifiers. For linear discriminant, we used two methods of regularization: principal component analysis, and ridge regularization. The classifiers were used (1) to classify the volumes according to the behavioral task that was performed by the subject, and (2) to construct spatial maps that indicated the relative contribution of each voxel to classification. Our evaluation metrics were: (1) accuracy of out-of-sample classification and (2) reproducibility of spatial maps. In simulated data sets, we performed an additional evaluation of spatial maps with ROC analysis. We varied the magnitude, temporal variance and connectivity of simulated fMRI signal and identified the optimal classifier for each simulated environment. Overall, the best performers were linear and quadratic discriminants (operating on principal components of the data matrix) and, in some rare situations, a nonlinear Gaussian naïve Bayes classifier. The results from the simulated data were supported by within-subject analysis of experimental fMRI data, collected in a study of aging. This is the first study that systematically characterizes interactions between analysis model and signal parameters (such as magnitude, variance and correlation) on the performance of pattern classifiers for fMRI.

摘要

功能磁共振成像(fMRI)数据分析领域在不断发展和完善,尤其是在多元模式分类领域。然而,分析模型的特性与 BOLD 信号的参数(如信号幅度、时间方差和功能连接)之间的相互作用仍然是一个悬而未决的问题。我们通过在模拟和实验块设计 fMRI 数据上评估一组模式分类算法来解决这个问题。该分类器集由线性和二次判别分析、线性支持向量机、线性和非线性高斯朴素贝叶斯分类器组成。对于线性判别分析,我们使用了两种正则化方法:主成分分析和岭正则化。分类器用于(1)根据被试执行的行为任务对体素进行分类,(2)构建表示每个体素对分类相对贡献的空间图谱。我们的评估指标为:(1)样本外分类的准确性和(2)空间图谱的可重复性。在模拟数据集上,我们通过 ROC 分析对空间图谱进行了额外的评估。我们改变了模拟 fMRI 信号的幅度、时间方差和连接性,并为每个模拟环境确定了最佳分类器。总体而言,表现最好的是线性和二次判别分析(作用于数据矩阵的主成分上),在某些罕见情况下,非线性高斯朴素贝叶斯分类器也表现良好。模拟数据的结果得到了在衰老研究中收集的实验 fMRI 数据的个体内分析的支持。这是第一项系统地描述分析模型与信号参数(如幅度、方差和相关性)之间相互作用对 fMRI 模式分类器性能影响的研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验