Institute for Clinical Radiology, Ludwig-Maximilians University Hospital Munich, Marchioninistr. 15, 81377, Munich, Germany.
J Pharmacokinet Pharmacodyn. 2013 Jun;40(3):281-300. doi: 10.1007/s10928-013-9315-3. Epub 2013 Apr 6.
Dynamic contrast-enhanced computed tomography (DCE-CT) and magnetic resonance imaging (DCE-MRI) are functional imaging techniques. They aim to characterise the microcirculation by applying the principles of tracer-kinetic analysis to concentration-time curves measured in individual image pixels. In this paper, we review the basic principles of DCE-MRI and DCE-CT, with a specific emphasis on the use of tracer-kinetic modeling. The aim is to provide an introduction to the field for a broader audience of pharmacokinetic modelers. In a first part, we first review the key aspects of data acquisition in DCE-CT and DCE-MRI, including a review of basic measurement strategies, a discussion on the relation between signal and concentration, and the problem of measuring reference data in arterial blood. In a second part, we define the four main parameters that can be measured with these techniques and review the most common tracer-kinetic models that are used in this field. We first discuss the models for the capillary bed and then define the most general four-parameter models used today: the two-compartment exchange model, the tissue-homogeneity model, the "adiabatic approximation to the tissue-homogeneity model" and the distributed-parameter model. In simpler tissue types or when the data quality is inadequate to resolve all the features of the more complex models, it is often necessary to resort to simpler models, which are special cases of the general models and hence have less parameters. We discuss the most common of these special cases, i.e. the uptake models, the extended Tofts model, and the one-compartment model. Models for two specific tissue types, liver and kidney, are discussed separately. We conclude with a review of practical aspects of DCE-CT and DCE-MRI data analysis, including the problem of identifying a suitable model for any given data set, and a brief discussion of the application of tracer-kinetic modeling in the context of drug development. Here, an important application of DCE techniques is the derivation of quantitative imaging biomarkers for the assessment of effects of targeted therapeutics on tumors.
动态对比增强计算机断层扫描(DCE-CT)和磁共振成像(DCE-MRI)是功能成像技术。它们通过将示踪动力学分析原理应用于在单个图像像素中测量的浓度-时间曲线,旨在对微循环进行特征描述。在本文中,我们回顾了 DCE-MRI 和 DCE-CT 的基本原理,特别强调了示踪动力学建模的应用。目的是为更广泛的药代动力学建模者群体介绍该领域。在第一部分中,我们首先回顾了 DCE-CT 和 DCE-MRI 中数据采集的关键方面,包括对基本测量策略的回顾、对信号与浓度之间关系的讨论,以及测量动脉血中参考数据的问题。在第二部分中,我们定义了可以用这些技术测量的四个主要参数,并回顾了该领域常用的最常见示踪动力学模型。我们首先讨论了毛细血管床的模型,然后定义了今天使用的最通用的四个参数模型:双室交换模型、组织均匀性模型、“组织均匀性模型的绝热近似”和分布参数模型。在更简单的组织类型或数据质量不足以解析更复杂模型的所有特征的情况下,通常需要采用更简单的模型,这些模型是一般模型的特例,因此参数较少。我们讨论了这些特殊情况中最常见的情况,即摄取模型、扩展 Tofts 模型和单室模型。还分别讨论了两种特定组织类型(肝脏和肾脏)的模型。最后,我们回顾了 DCE-CT 和 DCE-MRI 数据分析的实际方面,包括为任何给定数据集识别合适模型的问题,以及简要讨论示踪动力学建模在药物开发背景下的应用。在这里,DCE 技术的一个重要应用是为评估靶向治疗对肿瘤的影响而得出定量成像生物标志物。