Suppr超能文献

基于物理信息的神经网络在心肌灌注 MRI 定量中的应用。

Physics-informed neural networks for myocardial perfusion MRI quantification.

机构信息

Department of Biomedical Engineering, Medical Image Analysis group, Eindhoven University of Technology, Eindhoven, the Netherlands.

School of Biomedical Engineering and Imaging Sciences, King's College London, United Kingdom.

出版信息

Med Image Anal. 2022 May;78:102399. doi: 10.1016/j.media.2022.102399. Epub 2022 Feb 26.

Abstract

Tracer-kinetic models allow for the quantification of kinetic parameters such as blood flow from dynamic contrast-enhanced magnetic resonance (MR) images. Fitting the observed data with multi-compartment exchange models is desirable, as they are physiologically plausible and resolve directly for blood flow and microvascular function. However, the reliability of model fitting is limited by the low signal-to-noise ratio, temporal resolution, and acquisition length. This may result in inaccurate parameter estimates. This study introduces physics-informed neural networks (PINNs) as a means to perform myocardial perfusion MR quantification, which provides a versatile scheme for the inference of kinetic parameters. These neural networks can be trained to fit the observed perfusion MR data while respecting the underlying physical conservation laws described by a multi-compartment exchange model. Here, we provide a framework for the implementation of PINNs in myocardial perfusion MR. The approach is validated both in silico and in vivo. In the in silico study, an overall decrease in mean-squared error with the ground-truth parameters was observed compared to a standard non-linear least squares fitting approach. The in vivo study demonstrates that the method produces parameter values comparable to those previously found in literature, as well as providing parameter maps which match the clinical diagnosis of patients.

摘要

示踪动力学模型可用于从动态对比增强磁共振(MR)图像中定量血流等动力学参数。拟合观察到的数据与多腔室交换模型是理想的,因为它们在生理上是合理的,并直接解决血流和微血管功能。然而,模型拟合的可靠性受到信噪比、时间分辨率和采集长度的限制。这可能导致参数估计不准确。本研究介绍了物理信息神经网络(PINNs)作为一种执行心肌灌注磁共振定量的方法,它为推断动力学参数提供了一种通用的方案。这些神经网络可以在训练时拟合观察到的灌注磁共振数据,同时尊重由多腔室交换模型描述的基本物理守恒定律。在这里,我们提供了一个在心肌灌注磁共振中实现 PINNs 的框架。该方法在计算机模拟和体内都进行了验证。在计算机模拟研究中,与标准非线性最小二乘拟合方法相比,观察到均方误差与真实参数的总体降低。体内研究表明,该方法产生的参数值与文献中先前发现的参数值相当,并且提供的参数图与患者的临床诊断相匹配。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a379/9051528/77eb63465896/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验