Cell Growth and Differentiation Laboratory, Division of Human Immunology, South Australian Pathology, Adelaide, South Australia 5000, Australia.
J Biol Chem. 2013 May 24;288(21):14874-85. doi: 10.1074/jbc.M112.421669. Epub 2013 Apr 5.
The FGF receptors (FGFRs) control a multitude of cellular processes both during development and in the adult through the initiation of signaling cascades that regulate proliferation, survival, and differentiation. Although FGFR tyrosine phosphorylation and the recruitment of Src homology 2 domain proteins have been widely described, we have previously shown that FGFR is also phosphorylated on Ser(779) in response to ligand and binds the 14-3-3 family of phosphoserine/threonine-binding adaptor/scaffold proteins. However, whether this receptor phosphoserine mode of signaling is able to regulate specific signaling pathways and biological responses is unclear. Using PC12 pheochromocytoma cells and primary mouse bone marrow stromal cells as models for growth factor-regulated neuronal differentiation, we show that Ser(779) in the cytoplasmic domains of FGFR1 and FGFR2 is required for the sustained activation of Ras and ERK but not for other FGFR phosphotyrosine pathways. The regulation of Ras and ERK signaling by Ser(779) was critical not only for neuronal differentiation but also for cell survival under limiting growth factor concentrations. PKCε can phosphorylate Ser(779) in vitro, whereas overexpression of PKCε results in constitutive Ser(779) phosphorylation and enhanced PC12 cell differentiation. Furthermore, siRNA knockdown of PKCε reduces both growth factor-induced Ser(779) phosphorylation and neuronal differentiation. Our findings show that in addition to FGFR tyrosine phosphorylation, the phosphorylation of a conserved serine residue, Ser(779), can quantitatively control Ras/MAPK signaling to promote specific cellular responses.
成纤维细胞生长因子受体 (FGFRs) 通过启动信号级联反应来控制多种细胞过程,这些信号级联反应在发育过程中和成人中调节增殖、存活和分化。尽管 FGFR 酪氨酸磷酸化和 Src 同源 2 结构域蛋白的募集已被广泛描述,但我们之前已经表明,FGFR 还会在配体的作用下被磷酸化,磷酸化位点位于 Ser(779),并与 14-3-3 家族的磷酸丝氨酸/苏氨酸结合衔接蛋白/支架蛋白结合。然而,这种受体磷酸丝氨酸信号模式是否能够调节特定的信号通路和生物学反应尚不清楚。我们使用 PC12 嗜铬细胞瘤细胞和原代小鼠骨髓基质细胞作为生长因子调节神经元分化的模型,表明 FGFR1 和 FGFR2 胞质结构域中的 Ser(779)对于 Ras 和 ERK 的持续激活是必需的,但对于其他 FGFR 磷酸酪氨酸途径则不是必需的。Ser(779)对 Ras 和 ERK 信号的调节不仅对神经元分化至关重要,而且对生长因子浓度有限时的细胞存活也至关重要。PKCε 可以在体外磷酸化 Ser(779),而 PKCε 的过表达导致组成性 Ser(779)磷酸化和增强的 PC12 细胞分化。此外,PKCε 的 siRNA 敲低会降低生长因子诱导的 Ser(779)磷酸化和神经元分化。我们的研究结果表明,除了 FGFR 酪氨酸磷酸化之外,磷酸化一个保守的丝氨酸残基 Ser(779),可以定量控制 Ras/MAPK 信号通路,从而促进特定的细胞反应。