Department of Applied Mathematics and Statistics, University of California, Santa Cruz, California 95064, United States.
ACS Nano. 2013 May 28;7(5):3876-86. doi: 10.1021/nn401180j. Epub 2013 Apr 16.
The assembly of a DNA-DNA polymerase binary complex is the precursory step in genome replication, in which the enzyme binds to the 3' junction created when a primer binds to its complementary substrate. In this study, we use an active control method for observing the binding interaction between Klenow fragment (exo-) (KF) in the bulk-phase chamber above an α-hemolysin (α-HL) nanopore and a single DNA molecule tethered noncovalently in the nanopore. Specifically, the control method regulates the temporal availability of the primer-template DNA to KF binding and unbinding above the nanopore, on millisecond-to-second time scales. Our nanopore measurements support a model that incorporates two mutually exclusive binding states of KF to DNA at the primer-template junction site, termed "weakly bound" and "strongly bound" states. The composite binding affinity constant, the equilibrium constant between the weak and strong states, and the unbound-to-strong association rate are quantified from the data using derived modeling analysis. The results support that the strong state is in the nucleotide incorporation pathway, consistent with other nanopore assays. Surprisingly, the measured unbound-to-strong association process does not fit a model that admits binding of only free (unbound) KF to the tethered DNA but does fit an association rate that is proportional to the total (unbound and DNA-bound) KF concentration in the chamber above the nanopore. Our method provides a tool for measuring pre-equilibrium kinetics one molecule at a time, serially and for tens of thousands of single-molecule events, and can be used for other polynucleotide-binding enzymes.
DNA-DNA 聚合酶二聚体复合物的组装是基因组复制的前奏步骤,在此过程中,酶结合到引物与其互补底物结合时产生的 3' 连接点。在这项研究中,我们使用一种主动控制方法来观察在α-溶血素(α-HL)纳米孔上方的本体相中 Klenow 片段(外切酶)(KF)与非共价连接在纳米孔中的单个 DNA 分子之间的结合相互作用。具体来说,该控制方法调节了引物-模板 DNA 在纳米孔上方与 KF 结合和解离的时间可用性,时间尺度为毫秒到秒。我们的纳米孔测量结果支持了一种模型,该模型包含了 KF 在引物-模板连接位点与 DNA 的两种相互排斥的结合状态,分别称为“弱结合”和“强结合”状态。复合结合亲和力常数、弱态和强态之间的平衡常数以及未结合到强结合的缔合速率是从数据中使用推导的建模分析来量化的。结果支持强态处于核苷酸掺入途径,与其他纳米孔测定结果一致。令人惊讶的是,测量到的未结合到强结合的缔合过程不符合仅允许游离(未结合)KF 与连接 DNA 结合的模型,但符合与纳米孔上方腔室中总(未结合和 DNA 结合)KF 浓度成正比的缔合速率。我们的方法提供了一种工具,可用于逐个、连续地测量预平衡动力学,适用于数万次单分子事件,并且可用于其他多核苷酸结合酶。