Faculty of Production Engineering, Advanced Ceramics, University of Bremen, Bremen, Germany.
J Am Chem Soc. 2013 Apr 24;135(16):6307-16. doi: 10.1021/ja401590c. Epub 2013 Apr 16.
Understanding the interrelation between surface chemistry of colloidal particles and surface adsorption of biomolecules is a crucial prerequisite for the design of materials for biotechnological and nanomedical applications. Here, we elucidate how tailoring the surface chemistry of colloidal alumina particles (d50 = 180 nm) with amino (-NH2), carboxylate (-COOH), phosphate (-PO3H2) or sulfonate (-SO3H) groups affects adsorption and orientation of the model peptide glutathione disulfide (GSSG). GSSG adsorbed on native, -NH2-functionalized, and -SO3H-functionalized alumina but not on -COOH- and -PO3H2-functionalized particles. When adsorption occurred, the process was rapid (≤5 min), reversible by application of salts, and followed a Langmuir adsorption isotherm dependent on the particle surface functionalization and ζ potential. The orientation of particle bound GSSG was assessed by the release of glutathione after reducing the GSSG disulfide bond and by ζ potential measurements. GSSG is likely to bind via the carboxylate groups of one of its two glutathionyl (GS) moieties onto native and -NH2-modified alumina, whereas GSSG is suggested to bind to -SO3H-modified alumina via the primary amino groups of both GS moieties. Thus, GSSG adsorption and orientation can be tailored by varying the molecular composition of the particle surface, demonstrating a step toward guiding interactions of biomolecules with colloidal particles.
了解胶体颗粒的表面化学和生物分子的表面吸附之间的相互关系,是设计用于生物技术和纳米医学应用的材料的关键前提。在这里,我们阐明了如何通过修饰胶体氧化铝颗粒(d50 = 180nm)的表面化学,来影响模型肽谷胱甘肽二硫化物(GSSG)的吸附和取向。GSSG 吸附在天然、-NH2 功能化和-SO3H 功能化的氧化铝上,但不吸附在-COOH 和-PO3H2 功能化的颗粒上。当吸附发生时,这个过程是快速的(≤5 分钟),可以通过施加盐来逆转,并且遵循Langmuir 吸附等温线,这取决于颗粒表面的功能化和 ζ 电位。通过还原 GSSG 的二硫键并测量 ζ 电位来评估结合在颗粒上的 GSSG 的取向。GSSG 可能通过其两个谷胱甘肽基(GS)部分之一的羧酸盐基团结合到天然和-NH2 修饰的氧化铝上,而 GSSG 可能通过两个 GS 部分的伯氨基结合到-SO3H 修饰的氧化铝上。因此,通过改变颗粒表面的分子组成,可以定制 GSSG 的吸附和取向,这朝着指导生物分子与胶体颗粒相互作用迈出了一步。