State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
Water Res. 2013 Aug 1;47(12):4050-8. doi: 10.1016/j.watres.2013.01.054. Epub 2013 Mar 22.
Much work is devoted to heavy metal sorption, reduction and relevant mechanisms by nanoscale zero valent iron (nZVI) particle, but fewer studies utilize its magnetic properties in aqueous metal removals. Here, we have investigated the use of nZVI particles both electrosprayed (E-nZVI) and non-electrosprayed (NE-nZVI) with different concentration levels (0.186-1.86 mg/mL) in removing aqueous Cd(II), Cr(IV), and Pb(II) through the magnetic separation means. The effects of the reaction time (5-20 min) and magnetic treatment time (1-30 min) on relevant magnetic removal efficiencies were studied. Metal ion concentration was analyzed using inductively coupled plasma (ICP), and the magnetically obtained metal-nZVI mixtures were further analyzed using X-ray photoelectron spectroscopy (XPS). Results showed that the magnetic removal efficiencies of heavy metals varied with the metal species, nZVI loading, reaction and magnetic separation time. In most cases, use of 1.5 mg/mL E-nZVI or NE-nZVI resulted in removal efficiencies of more than 80% for Pb(II), Cd(II), and Cr(IV). Increasing the magnetic treatment time from 1 to 20 min was shown to lead to ≈ 20% increase in Pb(II) removal efficiency, but no improvements for Cd(II) and Cr(IV). In contrast, increasing the reaction time decreased the Pb(II) removal efficiency, yet no effects observed for Cd(II) and Cr(IV). In general, 1 min reaction and 5 min magnetic treatment were found sufficient to achieve considerable heavy metal removals. For comparable efficiencies, use of magnetic method could significantly reduce nZVI loading. XPS analysis results indicated that atomic percentages of O 1s, Fe 2p, Cd 3d, Pb 4f and Cr 2p varied with metal exposures. Different from Cd(II) and Cr(IV), aqueous iron ions might be possibly present when treating Pb(II). This study demonstrated a rapid heavy metal removal method using the magnetic property of nZVI particles, while contributing to understanding of the relevant removal mechanisms.
大量工作致力于通过纳米零价铁 (nZVI) 颗粒进行重金属吸附、还原和相关机制,但较少的研究利用其磁性在水相中去除金属。在这里,我们研究了不同浓度水平(0.186-1.86 mg/mL)的电喷雾(E-nZVI)和非电喷雾(NE-nZVI)nZVI 颗粒在通过磁性分离去除水溶液中的 Cd(II)、Cr(IV) 和 Pb(II)方面的应用。研究了反应时间(5-20 min)和磁处理时间(1-30 min)对相关磁性去除效率的影响。使用电感耦合等离子体(ICP)分析金属离子浓度,并使用 X 射线光电子能谱(XPS)进一步分析通过磁性获得的金属-nZVI 混合物。结果表明,重金属的磁性去除效率随金属种类、nZVI 负载、反应和磁分离时间而变化。在大多数情况下,使用 1.5 mg/mL 的 E-nZVI 或 NE-nZVI 可使 Pb(II)、Cd(II)和 Cr(IV)的去除效率超过 80%。增加磁处理时间从 1 分钟增加到 20 分钟,导致 Pb(II)去除效率提高了约 20%,但对 Cd(II)和 Cr(IV)没有改善。相反,增加反应时间会降低 Pb(II)的去除效率,但对 Cd(II)和 Cr(IV)没有影响。一般来说,1 分钟的反应和 5 分钟的磁处理就足以实现相当大的重金属去除。为了达到可比的效率,使用磁性方法可以显著减少 nZVI 的负载。XPS 分析结果表明,O 1s、Fe 2p、Cd 3d、Pb 4f 和 Cr 2p 的原子百分比随金属暴露而变化。与 Cd(II)和 Cr(IV)不同,在处理 Pb(II)时可能存在水溶液中的铁离子。本研究展示了一种利用 nZVI 颗粒磁性的快速重金属去除方法,同时有助于理解相关去除机制。