Grosman Benyamin, Voskanyan Gayane, Loutseiko Mikhail, Roy Anirban, Mehta Aloke, Kurtz Natalie, Parikh Neha, Kaufman Francine R, Mastrototaro John J, Keenan Barry
Medtronic Minimed Inc., 18000 Devonshire St., Northridge, CA 91325, USA.
J Diabetes Sci Technol. 2013 Mar 1;7(2):465-77. doi: 10.1177/193229681300700224.
In insulin pump therapy, optimization of bolus and basal insulin dose settings is a challenge. We introduce a new algorithm that provides individualized basal rates and new carbohydrate ratio and correction factor recommendations. The algorithm utilizes a mathematical model of blood glucose (BG) as a function of carbohydrate intake and delivered insulin, which includes individualized parameters derived from sensor BG and insulin delivery data downloaded from a patient's pump.
A mathematical model of BG as a function of carbohydrate intake and delivered insulin was developed. The model includes fixed parameters and several individualized parameters derived from the subject's BG measurements and pump data. Performance of the new algorithm was assessed using n = 4 diabetic canine experiments over a 32 h duration. In addition, 10 in silico adults from the University of Virginia/Padova type 1 diabetes mellitus metabolic simulator were tested.
The percentage of time in glucose range 80-180 mg/dl was 86%, 85%, 61%, and 30% using model-based therapy and [78%, 100%] (brackets denote multiple experiments conducted under the same therapy and animal model), [75%, 67%], 47%, and 86% for the control experiments for dogs 1 to 4, respectively. The BG measurements obtained in the simulation using our individualized algorithm were in 61-231 mg/dl min-max envelope, whereas use of the simulator's default treatment resulted in BG measurements 90-210 mg/dl min-max envelope.
The study results demonstrate the potential of this method, which could serve as a platform for improving, facilitating, and standardizing insulin pump therapy based on a single download of data.
在胰岛素泵治疗中,优化大剂量胰岛素和基础胰岛素剂量设置是一项挑战。我们引入了一种新算法,该算法可提供个性化的基础输注率以及新的碳水化合物比率和校正因子建议。该算法利用血糖(BG)作为碳水化合物摄入量和输注胰岛素的函数的数学模型,其中包括从传感器BG和从患者泵下载的胰岛素输注数据得出的个性化参数。
建立了血糖作为碳水化合物摄入量和输注胰岛素的函数的数学模型。该模型包括固定参数以及从受试者的BG测量值和泵数据得出的几个个性化参数。使用4只糖尿病犬进行了32小时的实验来评估新算法的性能。此外,还对弗吉尼亚大学/帕多瓦1型糖尿病代谢模拟器中的10名虚拟成年人进行了测试。
使用基于模型的治疗方法,血糖范围在80 - 180mg/dl的时间百分比,犬1至4分别为86%、85%、61%和30%,对照实验的相应结果分别为[78%,100%](方括号表示在相同治疗方法和动物模型下进行的多次实验)、[75%,67%]、47%和86%。使用我们的个性化算法在模拟中获得的BG测量值在61 - 231mg/dl分钟 - 最大值范围内,而使用模拟器的默认治疗方法得到的BG测量值在90 - 210mg/dl分钟 - 最大值范围内。
研究结果证明了该方法的潜力,它可以作为一个平台,基于单次数据下载来改进、促进和规范胰岛素泵治疗。