Suppr超能文献

基于胰岛素敏感性指数的胰岛素与碳水化合物比值优化:模拟研究表明,针对治疗不足引起的低血糖事件具有有效的保护作用。

Insulin Sensitivity Index-Based Optimization of Insulin to Carbohydrate Ratio: In Silico Study Shows Efficacious Protection Against Hypoglycemic Events Caused by Suboptimal Therapy.

机构信息

Department of Information Engineering, University of Padova , Padova, Italy .

出版信息

Diabetes Technol Ther. 2018 Feb;20(2):98-105. doi: 10.1089/dia.2017.0248.

Abstract

BACKGROUND AND AIM

The insulin to carbohydrate ratio (CR) is a parameter used by patients with type 1 diabetes (T1D) to calculate the premeal insulin bolus. Usually, it is estimated by the physician based on patient diary, but modern diabetes technologies, such as subcutaneous glucose sensing (continuous glucose monitoring, CGM) and insulin delivery (continuous subcutaneous insulin infusion, CSII) systems, can provide important information for its optimization. In this study, a method for CR optimization based on CGM and CSII data is presented and its efficacy and robustness tested in several in silico scenarios, with the primary aim of increasing protection against hypoglycemia.

METHODS

The method is based on a validated index of insulin sensitivity calculated from sensor and pump data (S), area under CGM and CSII curves. The efficacy and robustness of the method are tested in silico using the University of Virginia/Padova T1D simulator, in several suboptimal therapy scenarios: with nominal CR variation, over/underestimation of meal size or suboptimal basal insulin infusion. Simulated CGM and CSII data were used to calculate the optimal CR. The same scenarios were then repeated using the estimated CR and glycemic control was compared.

RESULTS

The optimized CR was efficacious in protecting against hypoglycemic events caused by suboptimal therapy. The method was also robust to possible error in carbohydrate count and suboptimal basal insulin infusion.

CONCLUSIONS

A novel method for CR optimization in T1D, implementable in daily life using CGM and CSII data, is proposed. The method can be used both in open- and closed-loop insulin therapy.

摘要

背景与目的

胰岛素与碳水化合物的比例(CR)是 1 型糖尿病(T1D)患者用来计算餐前胰岛素剂量的参数。通常,医生根据患者日记来估计,但现代糖尿病技术,如皮下葡萄糖感应(连续血糖监测,CGM)和胰岛素输注(连续皮下胰岛素输注,CSII)系统,可以提供优化它的重要信息。在这项研究中,提出了一种基于 CGM 和 CSII 数据的 CR 优化方法,并在几个模拟场景中测试了其有效性和稳健性,主要目的是增加对低血糖的保护。

方法

该方法基于从传感器和泵数据(S)计算的经过验证的胰岛素敏感性指数,CGM 和 CSII 曲线下面积。使用弗吉尼亚大学/帕多瓦 T1D 模拟器在几个次优治疗场景中在计算机上测试该方法的有效性和稳健性:名义 CR 变化、餐食大小的高估/低估或基础胰岛素输注不当。使用模拟 CGM 和 CSII 数据计算最佳 CR。然后,使用估计的 CR 重复相同的场景,并比较血糖控制情况。

结果

优化的 CR 在防止因次优治疗引起的低血糖事件方面是有效的。该方法对碳水化合物计数和基础胰岛素输注不当的可能误差也具有稳健性。

结论

提出了一种新的 T1D CR 优化方法,可使用 CGM 和 CSII 数据在日常生活中实施。该方法可用于开环和闭环胰岛素治疗。

相似文献

5
Comparison of Insulin Pump Therapy and Multiple Daily Injections Insulin Regimen in Patients with Type 1 Diabetes During Ramadan Fasting.
Diabetes Technol Ther. 2017 Jun;19(6):349-354. doi: 10.1089/dia.2016.0418. Epub 2017 Mar 15.
6
An online failure detection method of the glucose sensor-insulin pump system: improved overnight safety of type-1 diabetic subjects.
IEEE Trans Biomed Eng. 2013 Feb;60(2):406-16. doi: 10.1109/TBME.2012.2227256. Epub 2012 Nov 15.
9
The university of Virginia/Padova type 1 diabetes simulator matches the glucose traces of a clinical trial.
Diabetes Technol Ther. 2014 Jul;16(7):428-34. doi: 10.1089/dia.2013.0377. Epub 2014 Feb 26.
10
Continuous Glucose Monitoring: A Review of Recent Studies Demonstrating Improved Glycemic Outcomes.
Diabetes Technol Ther. 2017 Jun;19(S3):S25-S37. doi: 10.1089/dia.2017.0035.

引用本文的文献

1
Quantitative estimation of disposition index from postprandial glucose data across the spectrum of glucose tolerance.
Am J Physiol Endocrinol Metab. 2025 Aug 1;329(2):E354-E366. doi: 10.1152/ajpendo.00407.2024. Epub 2025 Jul 12.
4
Mathematical Models of Meal Amount and Timing Variability With Implementation in the Type-1 Diabetes Patient Decision Simulator.
J Diabetes Sci Technol. 2021 Mar;15(2):346-359. doi: 10.1177/1932296820952123. Epub 2020 Sep 17.
6
Carbohydrate Requirement for Exercise in Type 1 Diabetes: Effects of Insulin Concentration.
J Diabetes Sci Technol. 2020 Nov;14(6):1116-1121. doi: 10.1177/1932296819826962. Epub 2019 Feb 15.
7
Continuous Glucose Monitoring: Current Use in Diabetes Management and Possible Future Applications.
J Diabetes Sci Technol. 2018 Sep;12(5):1064-1071. doi: 10.1177/1932296818774078. Epub 2018 May 22.

本文引用的文献

2
Outcome Measures for Artificial Pancreas Clinical Trials: A Consensus Report.
Diabetes Care. 2016 Jul;39(7):1175-9. doi: 10.2337/dc15-2716.
3
Adjustment of Open-Loop Settings to Improve Closed-Loop Results in Type 1 Diabetes: A Multicenter Randomized Trial.
J Clin Endocrinol Metab. 2015 Oct;100(10):3878-86. doi: 10.1210/jc.2015-2081. Epub 2015 Jul 23.
5
Method for automatic adjustment of an insulin bolus calculator: in silico robustness evaluation under intra-day variability.
Comput Methods Programs Biomed. 2015 Apr;119(1):1-8. doi: 10.1016/j.cmpb.2015.02.003. Epub 2015 Feb 16.
6
Retrofitting of continuous glucose monitoring traces allows more accurate assessment of glucose control in outpatient studies.
Diabetes Technol Ther. 2015 May;17(5):355-63. doi: 10.1089/dia.2014.0230. Epub 2015 Feb 11.
7
Clinical accuracy of a continuous glucose monitoring system with an advanced algorithm.
J Diabetes Sci Technol. 2015 Mar;9(2):209-14. doi: 10.1177/1932296814559746. Epub 2014 Nov 3.
8
Advanced Insulin Bolus Advisor Based on Run-To-Run Control and Case-Based Reasoning.
IEEE J Biomed Health Inform. 2015 May;19(3):1087-96. doi: 10.1109/JBHI.2014.2331896.
9
The UVA/PADOVA Type 1 Diabetes Simulator: New Features.
J Diabetes Sci Technol. 2014 Jan;8(1):26-34. doi: 10.1177/1932296813514502. Epub 2014 Jan 1.
10
Improving accuracy and precision of glucose sensor profiles: retrospective fitting by constrained deconvolution.
IEEE Trans Biomed Eng. 2014 Apr;61(4):1044-53. doi: 10.1109/TBME.2013.2293531.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验