Laboratoire Psychologie de la Perception, Université Paris Descartes and Centre National de la Recherche Scientifique, 75006 Paris, France.
Proc Natl Acad Sci U S A. 2013 Apr 23;110(17):7080-5. doi: 10.1073/pnas.1213997110. Epub 2013 Apr 9.
When human observers are exposed to even slight motion signals followed by brief visual transients--stimuli containing no detectable coherent motion signals--they perceive large and salient illusory jumps. This visually striking effect, which we call "high phi," challenges well-entrenched assumptions about the perception of motion, namely the minimal-motion principle and the breakdown of coherent motion perception with steps above an upper limit called dmax. Our experiments with transients, such as texture randomization or contrast reversal, show that the magnitude of the jump depends on spatial frequency and transient duration--but not on the speed of the inducing motion signals--and the direction of the jump depends on the duration of the inducer. Jump magnitude is robust across jump directions and different types of transient. In addition, when a texture is actually displaced by a large step beyond the upper step size limit of dmax, a breakdown of coherent motion perception is expected; however, in the presence of an inducer, observers again perceive coherent displacements at or just above dmax. In summary, across a large variety of stimuli, we find that when incoherent motion noise is preceded by a small bias, instead of perceiving little or no motion--as suggested by the minimal-motion principle--observers perceive jumps whose amplitude closely follows their own dmax limits.
当人类观察者暴露于即使是轻微的运动信号,接着是短暂的视觉瞬变——刺激中没有可检测到的连贯运动信号——他们会感知到大而明显的错觉跳跃。这种视觉效果非常引人注目,我们称之为“高 phi”,它挑战了关于运动感知的既定假设,即最小运动原则和连贯运动感知在超过称为 dmax 的上限的阶跃处的崩溃。我们对瞬变的实验,如纹理随机化或对比度反转,表明跳跃的幅度取决于空间频率和瞬变持续时间——但不取决于诱导运动信号的速度——并且跳跃的方向取决于诱导器的持续时间。跳跃幅度在跳跃方向和不同类型的瞬变之间都很稳健。此外,当纹理实际上被大的阶跃超过 dmax 的上限阶跃尺寸位移时,预期会出现连贯运动感知的崩溃;然而,在诱导器存在的情况下,观察者再次感知到 dmax 或刚好超过 dmax 的连贯位移。总之,在各种各样的刺激中,我们发现,当非相干运动噪声之前存在小的偏差时,观察者不会像最小运动原则所暗示的那样感知到很少或没有运动,而是感知到其幅度接近其自身 dmax 限制的跳跃。