Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2.
Inorg Chem. 2013 May 6;52(9):5590-602. doi: 10.1021/ic400652b. Epub 2013 Apr 10.
The structural and electronic properties of monoperoxo and diperoxo uranyl complexes with aquo, fluoride, hydroxo, carbonate, and nitrate ligands have been studied using scalar relativistic density functional theory (DFT). Only the complexes in which the peroxo ligands are coordinated to the uranyl moiety in a bidentate mode were considered. The calculated binding energies confirm that the affinity of the peroxo ligand for the uranyl group far exceeds that of the F(-), OH(-), CO3(2-), NO3(-), and H2O ligands. The formation of the monoperoxo complexes from UO2(H2O)5(2+) and HO2(-) were found to be exothermic in solution. In contrast, the formation of the monouranyl-diperoxo, UO2(O2)2X2(4-) or UO2(O2)2X(4-/3-) (where X is any of F(-), OH(-), CO3(2-), or NO3(-)), complexes were all found to be endothermic in aqueous solution. This suggests that the monoperoxo species are the terminal monouranyl peroxo complexes in solution, in agreement with recent experimental work. Overall, we find that the properties of the uranyl-peroxo complexes conform to well-known trends: the coordination of the peroxo ligand weakens the U-O(yl) bonds, stabilizes the σ(d) orbitals and causes a mixing between the uranyl π- and peroxo σ- and π-orbitals. The weakening of the U-O(yl) bonds upon peroxide coordination results in uranyl stretching vibrational frequencies that are much lower than those obtained after the coordination of carbonato or hydroxo ligands.
采用标量相对论密度泛函理论(DFT)研究了水合、氟化物、羟化物、碳酸盐和硝酸盐配体的单过氧和双过氧铀酰配合物的结构和电子性质。仅考虑了其中过氧配体以双齿配位模式与铀酰部分配位的配合物。计算的结合能证实,过氧配体与铀酰基团的亲和力远远超过 F(-)、OH(-)、CO3(2-)、NO3(-) 和 H2O 配体。发现 UO2(H2O)5(2+) 和 HO2(-) 形成单过氧配合物在溶液中是放热的。相比之下,单铀酰-双过氧、UO2(O2)2X2(4-) 或 UO2(O2)2X(4-/3-)(其中 X 是 F(-)、OH(-)、CO3(2-) 或 NO3(-) 中的任何一种)配合物在水溶液中都是吸热的。这表明单过氧物种是溶液中末端单铀酰过氧配合物,与最近的实验工作一致。总体而言,我们发现铀酰过氧配合物的性质符合已知趋势:过氧配体的配位削弱了 U-O(yl) 键,稳定了 σ(d) 轨道,并导致铀酰 π- 和过氧 σ- 和 π-轨道之间的混合。过氧配位导致 U-O(yl) 键变弱,导致铀酰伸缩振动频率远低于与碳酸盐或羟化物配位后获得的频率。