Suppr超能文献

单体和三聚体重组 SARS 冠状病毒刺突蛋白亚单位疫苗候选物的免疫原性和保护效力。

Immunogenicity and protection efficacy of monomeric and trimeric recombinant SARS coronavirus spike protein subunit vaccine candidates.

机构信息

Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA.

出版信息

Viral Immunol. 2013 Apr;26(2):126-32. doi: 10.1089/vim.2012.0076.

Abstract

Severe acute respiratory syndrome (SARS) is a newly emerging infectious disease, and an effective vaccine is not available. In this study, we compared the immunogenicity and protection efficacy of recombinant proteins corresponding to different domains of the SARS-coronavirus spike protein. Trimeric recombinant proteins were created by fusing the foldon domain derived from T4 bacteriophage to the carboxy-termini of individual domains of the spike protein. While the full-length ectodomain (S) of the spike protein, the full-length ectodomain fused to foldon (S-foldon), the S1 domain (S1), S1-foldon, and the S2 domain(S2) antigens all elicited comparable antibody titers as measured by ELISA, S-foldon induced a significantly higher titer of neutralizing antibody and S2 protein did not elicit virus neutralizing antibodies. When tested in a mouse virus replication model, all the mice vaccinated with the S1, S1-foldon, S, or S-foldon were completely protected.

摘要

严重急性呼吸系统综合症(SARS)是一种新发传染病,目前尚无有效的疫苗。本研究比较了 SARS 冠状病毒刺突蛋白不同结构域的重组蛋白的免疫原性和保护效果。通过将 T4 噬菌体的折叠结构域融合到刺突蛋白的羧基末端,构建了三聚体重组蛋白。全长胞外域(S)、融合折叠结构域的全长胞外域(S-foldon)、S1 结构域(S1)、S1-foldon 和 S2 结构域(S2)抗原均通过 ELISA 检测到相当的抗体滴度,而 S-foldon 诱导的中和抗体滴度显著更高,S2 蛋白不能诱导病毒中和抗体。在小鼠病毒复制模型中检测时,所有用 S1、S1-foldon、S 或 S-foldon 免疫的小鼠均完全得到保护。

相似文献

引用本文的文献

4
Immunoinformatics lessons on the current COVID-19 pandemic and future coronavirus zoonoses.
Front Immunol. 2023 Dec 12;14:1118267. doi: 10.3389/fimmu.2023.1118267. eCollection 2023.
6
Influence of glycosylation on the immunogenicity and antigenicity of viral immunogens.
Biotechnol Adv. 2024 Jan-Feb;70:108283. doi: 10.1016/j.biotechadv.2023.108283. Epub 2023 Nov 14.
7
COVID-19 Vaccines over Three Years after the Outbreak of the COVID-19 Epidemic.
Viruses. 2023 Aug 23;15(9):1786. doi: 10.3390/v15091786.
9
Non-Invasive Vaccines: Challenges in Formulation and Vaccine Adjuvants.
Pharmaceutics. 2023 Aug 9;15(8):2114. doi: 10.3390/pharmaceutics15082114.
10
Studying pathogens degrades BLAST-based pathogen identification.
Sci Rep. 2023 Apr 3;13(1):5390. doi: 10.1038/s41598-023-32481-z.

本文引用的文献

1
SARS vaccines: where are we?
Expert Rev Vaccines. 2009 Jul;8(7):887-98. doi: 10.1586/erv.09.43.
2
The spike protein of SARS-CoV--a target for vaccine and therapeutic development.
Nat Rev Microbiol. 2009 Mar;7(3):226-36. doi: 10.1038/nrmicro2090. Epub 2009 Feb 9.
3
Animal models and vaccines for SARS-CoV infection.
Virus Res. 2008 Apr;133(1):20-32. doi: 10.1016/j.virusres.2007.03.025. Epub 2007 May 11.
4
Vaccines to prevent severe acute respiratory syndrome coronavirus-induced disease.
Virus Res. 2008 Apr;133(1):45-62. doi: 10.1016/j.virusres.2007.01.021. Epub 2007 Apr 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验