Suppr超能文献

通过有限温度弦方法洞察水蒸发的分子机制。

Insight into the molecular mechanism of water evaporation via the finite temperature string method.

机构信息

Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Rm. E19-502, Cambridge, Massachusetts 02144, USA.

出版信息

J Chem Phys. 2013 Apr 7;138(13):134707. doi: 10.1063/1.4798458.

Abstract

The process of water's evaporation at its liquid/air interface has proven challenging to study experimentally and, because it constitutes a rare event on molecular time scales, presents a challenge for computer simulations as well. In this work, we simulated water's evaporation using the classical extended simple point charge model water model, and identified a minimum free energy path for this process in terms of 10 descriptive order parameters. The measured free energy change was 7.4 kcal/mol at 298 K, in reasonable agreement with the experimental value of 6.3 kcal/mol, and the mean first-passage time was 1375 ns for a single molecule, corresponding to an evaporation coefficient of 0.25. In the observed minimum free energy process, the water molecule diffuses to the surface, and tends to rotate so that its dipole and one O-H bond are oriented outward as it crosses the Gibbs dividing surface. As the water molecule moves further outward through the interfacial region, its local density is higher than the time-averaged density, indicating a local solvation shell that protrudes from the interface. The water molecule loses donor and acceptor hydrogen bonds, and then, with its dipole nearly normal to the interface, stops donating its remaining hydrogen bond. At that point, when the final, accepted hydrogen bond is broken, the water molecule is free. We also analyzed which order parameters are most important in the process and in reactive trajectories, and found that the relative orientation of water molecules near the evaporating molecule, and the number of accepted hydrogen bonds, were important variables in reactive trajectories and in kinetic descriptions of the process.

摘要

在液态/气相间,水的蒸发过程在实验上很难研究,而且由于它在分子时间尺度上构成了罕见事件,因此对计算机模拟也提出了挑战。在这项工作中,我们使用经典的扩展简单点电荷模型水模型模拟了水的蒸发,并根据 10 个描述性序参数确定了该过程的最小自由能途径。在 298 K 下,测量的自由能变化为 7.4 kcal/mol,与实验值 6.3 kcal/mol 相当合理,单个分子的平均首次通过时间为 1375 ns,对应的蒸发系数为 0.25。在观察到的最小自由能过程中,水分子扩散到表面,并倾向于旋转,使其偶极子和一个 O-H 键在穿过吉布斯分界面时向外定向。当水分子进一步向外穿过界面区域时,其局部密度高于时间平均密度,表明从界面突出的局部溶剂化壳。水分子失去供体和受体氢键,然后,随着其偶极子几乎垂直于界面,停止提供其剩余的氢键。在那一刻,当最后一个接受的氢键断裂时,水分子就自由了。我们还分析了哪些序参数在过程中和反应轨迹中最重要,并发现蒸发分子附近水分子的相对取向以及接受氢键的数量是反应轨迹和过程动力学描述中的重要变量。

相似文献

2
Dynamics of water interacting with interfaces, molecules, and ions.
Acc Chem Res. 2012 Jan 17;45(1):3-14. doi: 10.1021/ar2000088. Epub 2011 Mar 18.
3
Topological hydrogen-bond definition to characterize the structure and dynamics of liquid water.
J Phys Chem B. 2010 Dec 23;114(50):16792-810. doi: 10.1021/jp105381s. Epub 2010 Nov 29.
4
Anomalies and Local Structure of Liquid Water from Boiling to the Supercooled Regime as Predicted by the Many-Body MB-pol Model.
J Phys Chem Lett. 2022 Apr 28;13(16):3652-3658. doi: 10.1021/acs.jpclett.2c00567. Epub 2022 Apr 18.
5
Structural rearrangements in water viewed through two-dimensional infrared spectroscopy.
Acc Chem Res. 2009 Sep 15;42(9):1239-49. doi: 10.1021/ar900088g.
7
Hydrogen-bond dynamics at the bio-water interface in hydrated proteins: a molecular-dynamics study.
Phys Chem Chem Phys. 2016 Dec 21;19(1):318-329. doi: 10.1039/c6cp05601f.
9
Water evaporation: a transition path sampling study.
J Phys Chem B. 2013 Feb 7;117(5):1419-28. doi: 10.1021/jp310070y. Epub 2013 Jan 7.
10
Interfacial thermodynamics of confined water near molecularly rough surfaces.
Faraday Discuss. 2010;146:341-52; discussion 367-93, 395-401. doi: 10.1039/b925913a.

引用本文的文献

1
High Hydrovoltaic Power Density Achieved by Universal Evaporating Potential Devices.
Adv Sci (Weinh). 2023 Oct;10(30):e2302941. doi: 10.1002/advs.202302941. Epub 2023 Sep 15.
2
Enhanced Water Evaporation from Å-Scale Graphene Nanopores.
ACS Nano. 2022 Sep 27;16(9):15382-15396. doi: 10.1021/acsnano.2c07193. Epub 2022 Aug 24.
3
Mechanistic Investigation of Electrostatic Field-Enhanced Water Evaporation.
Adv Sci (Weinh). 2021 Sep;8(18):e2100875. doi: 10.1002/advs.202100875. Epub 2021 Jul 26.

本文引用的文献

1
Numerical simulation of virus diffusion in facemask during breathing cycles.
Int J Heat Mass Transf. 2005 Sep;48(19):4229-4242. doi: 10.1016/j.ijheatmasstransfer.2005.03.030. Epub 2005 Jul 6.
2
The Effect of Polarizability for Understanding the Molecular Structure of Aqueous Interfaces.
J Chem Theory Comput. 2007 Nov;3(6):2002-10. doi: 10.1021/ct700098z.
3
Update 1 of: Mass accommodation and chemical reactions at gas-liquid interfaces.
Chem Rev. 2011 Apr 13;111(4):PR76-109. doi: 10.1021/cr100360b.
4
Thermodynamic properties of methane/water interface predicted by molecular dynamics simulations.
J Chem Phys. 2011 Apr 14;134(14):144702. doi: 10.1063/1.3579480.
5
A general set of order parameters for molecular crystals.
J Chem Phys. 2011 Feb 14;134(6):064109. doi: 10.1063/1.3548889.
6
Molecular dynamics study on the microscopic details of the evaporation of water.
J Phys Chem A. 2011 Jun 16;115(23):6054-8. doi: 10.1021/jp1104517. Epub 2011 Feb 15.
8
Instantaneous liquid interfaces.
J Phys Chem B. 2010 Feb 11;114(5):1954-8. doi: 10.1021/jp909219k.
10
Markovian milestoning with Voronoi tessellations.
J Chem Phys. 2009 May 21;130(19):194101. doi: 10.1063/1.3129843.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验