Suppr超能文献

辅助 KChIP4a 通过内质网 (ER) 保留抑制 A 型 K+ 电流,并促进 Kv4 通道的关闭状态失活。

Auxiliary KChIP4a suppresses A-type K+ current through endoplasmic reticulum (ER) retention and promoting closed-state inactivation of Kv4 channels.

机构信息

Department of Neurobiology, Neuroscience Research Institute, Peking University Health Science Center, Peking University School of Pharmaceutical Sciences, Beijing 100191, China.

出版信息

J Biol Chem. 2013 May 24;288(21):14727-41. doi: 10.1074/jbc.M113.466052. Epub 2013 Apr 10.

Abstract

In the brain and heart, auxiliary Kv channel-interacting proteins (KChIPs) co-assemble with pore-forming Kv4 α-subunits to form a native K(+) channel complex and regulate the expression and gating properties of Kv4 currents. Among the KChIP1-4 members, KChIP4a exhibits a unique N terminus that is known to suppress Kv4 function, but the underlying mechanism of Kv4 inhibition remains unknown. Using a combination of confocal imaging, surface biotinylation, and electrophysiological recordings, we identified a novel endoplasmic reticulum (ER) retention motif, consisting of six hydrophobic and aliphatic residues, 12-17 (LIVIVL), within the KChIP4a N-terminal KID, that functions to reduce surface expression of Kv4-KChIP complexes. This ER retention capacity is transferable and depends on its flanking location. In addition, adjacent to the ER retention motif, the residues 19-21 (VKL motif) directly promote closed-state inactivation of Kv4.3, thus leading to an inhibition of channel current. Taken together, our findings demonstrate that KChIP4a suppresses A-type Kv4 current via ER retention and enhancement of Kv4 closed-state inactivation.

摘要

在大脑和心脏中,辅助性 Kv 通道相互作用蛋白(KChIPs)与孔形成性 Kv4α亚基共同组装形成天然 K(+)通道复合物,并调节 Kv4 电流的表达和门控特性。在 KChIP1-4 成员中,KChIP4a 具有独特的 N 端,已知该 N 端可抑制 Kv4 功能,但 Kv4 抑制的潜在机制仍不清楚。我们使用共聚焦成像、表面生物素化和电生理记录的组合,在 KChIP4a N 端 KID 内鉴定出一个新的内质网 (ER) 保留基序,该基序由六个疏水性和脂肪族残基组成,即 12-17(LIVIVL),该基序可降低 Kv4-KChIP 复合物的表面表达。这种 ER 保留能力是可转移的,并取决于其侧翼位置。此外,紧邻 ER 保留基序的残基 19-21(VKL 基序)直接促进 Kv4.3 的关闭状态失活,从而导致通道电流抑制。总之,我们的研究结果表明,KChIP4a 通过 ER 保留和增强 Kv4 关闭状态失活来抑制 A 型 Kv4 电流。

相似文献

2
3
Functional rescue of Kv4.3 channel tetramerization mutants by KChIP4a.
Biophys J. 2010 Jun 16;98(12):2867-76. doi: 10.1016/j.bpj.2010.03.044.
4
The tetramerization domain potentiates Kv4 channel function by suppressing closed-state inactivation.
Biophys J. 2014 Sep 2;107(5):1090-1104. doi: 10.1016/j.bpj.2014.07.038.
5
Structural Insights into KChIP4a Modulation of Kv4.3 Inactivation.
J Biol Chem. 2009 Feb 20;284(8):4960-7. doi: 10.1074/jbc.M807704200. Epub 2008 Dec 24.
6
Elimination of fast inactivation in Kv4 A-type potassium channels by an auxiliary subunit domain.
Proc Natl Acad Sci U S A. 2002 Jan 22;99(2):1035-40. doi: 10.1073/pnas.022509299.
7
Structural basis for modulation of Kv4 K+ channels by auxiliary KChIP subunits.
Nat Neurosci. 2007 Jan;10(1):32-9. doi: 10.1038/nn1822. Epub 2006 Dec 24.
8
A fundamental role for KChIPs in determining the molecular properties and trafficking of Kv4.2 potassium channels.
J Biol Chem. 2003 Sep 19;278(38):36445-54. doi: 10.1074/jbc.M306142200. Epub 2003 Jun 26.
10
Different KChIPs compete for heteromultimeric assembly with pore-forming Kv4 subunits.
Biophys J. 2015 Jun 2;108(11):2658-69. doi: 10.1016/j.bpj.2015.04.024.

引用本文的文献

3
Endoplasmic Reticulum in Metaplasticity: From Information Processing to Synaptic Proteostasis.
Mol Neurobiol. 2022 Sep;59(9):5630-5655. doi: 10.1007/s12035-022-02916-1. Epub 2022 Jun 23.
5
Ankyrin Is An Intracellular Tether for TMC Mechanotransduction Channels.
Neuron. 2020 Jul 8;107(1):112-125.e10. doi: 10.1016/j.neuron.2020.03.026. Epub 2020 Apr 22.
6
Kv channel-interacting proteins as neuronal and non-neuronal calcium sensors.
Channels (Austin). 2018;12(1):187-200. doi: 10.1080/19336950.2018.1491243.
8
Different KChIPs compete for heteromultimeric assembly with pore-forming Kv4 subunits.
Biophys J. 2015 Jun 2;108(11):2658-69. doi: 10.1016/j.bpj.2015.04.024.
10
The tetramerization domain potentiates Kv4 channel function by suppressing closed-state inactivation.
Biophys J. 2014 Sep 2;107(5):1090-1104. doi: 10.1016/j.bpj.2014.07.038.

本文引用的文献

1
A novel KCND3 gain-of-function mutation associated with early-onset of persistent lone atrial fibrillation.
Cardiovasc Res. 2013 Jun 1;98(3):488-95. doi: 10.1093/cvr/cvt028. Epub 2013 Feb 11.
2
Mutations in potassium channel kcnd3 cause spinocerebellar ataxia type 19.
Ann Neurol. 2012 Dec;72(6):870-80. doi: 10.1002/ana.23700.
3
Mutations in KCND3 cause spinocerebellar ataxia type 22.
Ann Neurol. 2012 Dec;72(6):859-69. doi: 10.1002/ana.23701.
5
Duloxetine blocks cloned Kv4.3 potassium channels.
Brain Res. 2012 Jul 23;1466:15-23. doi: 10.1016/j.brainres.2012.05.028. Epub 2012 May 19.
6
Novel mutations in the KCND3-encoded Kv4.3 K+ channel associated with autopsy-negative sudden unexplained death.
Hum Mutat. 2012 Jun;33(6):989-97. doi: 10.1002/humu.22058. Epub 2012 Mar 27.
7
The brain-specific Beta4 subunit downregulates BK channel cell surface expression.
PLoS One. 2012;7(3):e33429. doi: 10.1371/journal.pone.0033429. Epub 2012 Mar 16.
8
Circadian rhythms govern cardiac repolarization and arrhythmogenesis.
Nature. 2012 Feb 22;483(7387):96-9. doi: 10.1038/nature10852.
10
Block of cloned Kv4.3 potassium channels by dapoxetine.
Neuropharmacology. 2012 Jun;62(7):2261-6. doi: 10.1016/j.neuropharm.2011.12.006. Epub 2011 Dec 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验