Department of Biology, National University of Ireland Maynooth, Maynooth, Ireland.
Proc Natl Acad Sci U S A. 2013 Apr 23;110(17):E1594-603. doi: 10.1073/pnas.1211371110. Epub 2013 Apr 1.
The complexity and depth of the relationships between the three domains of life challenge the reliability of phylogenetic methods, encouraging the use of alternative analytical tools. We reconstructed a gene similarity network comprising the proteomes of 14 eukaryotes, 104 prokaryotes, 2,389 viruses and 1,044 plasmids. This network contains multiple signatures of the chimerical origin of Eukaryotes as a fusion of an archaebacterium and a eubacterium that could not have been observed using phylogenetic trees. A number of connected components (gene sets with stronger similarities than expected by chance) contain pairs of eukaryotic sequences exhibiting no direct detectable similarity. Instead, many eukaryotic sequences were indirectly connected through a "eukaryote-archaebacterium-eubacterium-eukaryote" similarity path. Furthermore, eukaryotic genes highly connected to prokaryotic genes from one domain tend not to be connected to genes from the other prokaryotic domain. Genes of archaebacterial and eubacterial ancestry tend to perform different functions and to act at different subcellular compartments, but in such an intertwined way that suggests an early rather than late integration of both gene repertoires. The archaebacterial repertoire has a similar size in all eukaryotic genomes whereas the number of eubacterium-derived genes is much more variable, suggesting a higher plasticity of this gene repertoire. Consequently, highly reduced eukaryotic genomes contain more genes of archaebacterial than eubacterial affinity. Connected components with prokaryotic and eukaryotic genes tend to include viral and plasmid genes, compatible with a role of gene mobility in the origin of Eukaryotes. Our analyses highlight the power of network approaches to study deep evolutionary events.
生命三个领域之间关系的复杂性和深度挑战了系统发育方法的可靠性,鼓励使用替代的分析工具。我们重建了一个包含 14 种真核生物、104 种原核生物、2389 种病毒和 1044 种质粒的蛋白质组基因相似性网络。这个网络包含了真核生物嵌合起源的多个特征,即古细菌和细菌的融合,而这些特征是无法通过系统发育树观察到的。许多连通分量(基因集的相似性比随机预期的要强)包含了没有直接可检测相似性的真核序列对。相反,许多真核序列通过“真核生物-古细菌-细菌-真核生物”的相似性路径间接连接。此外,与一个域的原核基因高度连接的真核基因往往与另一个原核域的基因没有连接。古细菌和细菌祖先的基因倾向于执行不同的功能,并作用于不同的亚细胞隔室,但它们的相互作用方式表明,这两个基因库的整合是早期的,而不是晚期的。古细菌基因库在所有真核生物基因组中具有相似的大小,而细菌基因的数量则变化很大,这表明这个基因库的可塑性更高。因此,高度简化的真核生物基因组包含更多的古细菌而不是细菌亲和力的基因。包含原核生物和真核生物基因的连通分量往往包含病毒和质粒基因,这与基因移动在真核生物起源中的作用是一致的。我们的分析强调了网络方法在研究深层进化事件中的强大功能。
Proc Natl Acad Sci U S A. 2013-4-1
Proc Natl Acad Sci U S A. 2010-9-17
Mol Biol Evol. 2007-8
Genome Biol Evol. 2020-4-1
Int J Syst Evol Microbiol. 2002-1
Nature. 2015-8-19
J Mol Evol. 2023-12
Microbiol Mol Biol Rev. 2023-12-20
BMC Genomics. 2023-11-21
Front Big Data. 2022-11-4
Evolution. 2022-8
Mol Biol Evol. 2011-11-29
Proc Biol Sci. 2011-9-14
Biol Direct. 2011-8-23
Bioessays. 2011-8-22
Trends Microbiol. 2011-8-3
Proc Natl Acad Sci U S A. 2011-8-2
Science. 2010-11-26