Department of Physics, Stanford University, Stanford, California 94305, USA.
Phys Rev Lett. 2013 Mar 29;110(13):130802. doi: 10.1103/PhysRevLett.110.130802. Epub 2013 Mar 26.
We demonstrate an absolute magnetometer based on quantum beats in the ground state of nitrogen-vacancy centers in diamond. We show that, by eliminating the dependence of spin evolution on the zero-field splitting D, the magnetometer is immune to temperature fluctuation and strain inhomogeneity. We apply this technique to measure low-frequency magnetic field noise by using a single nitrogen-vacancy center located within 500 nm of the surface of an isotopically pure (99.99% 12C) diamond. The photon-shot-noise limited sensitivity achieves 38 nT/sqrt[Hz] for 4.45 s acquisition time, a factor of sqrt[2] better than the implementation which uses only two spin levels. For long acquisition times (>10 s), we realize up to a factor of 15 improvement in magnetic sensitivity, which demonstrates the robustness of our technique against thermal drifts. Applying our technique to nitrogen-vacancy center ensembles, we eliminate dephasing from longitudinal strain inhomogeneity, resulting in a factor of 2.3 improvement in sensitivity.
我们展示了一种基于金刚石中氮空位中心基态量子拍频的绝对磁力计。我们表明,通过消除自旋演化对零场分裂 D 的依赖,该磁力计能够抵抗温度波动和应变非均匀性。我们应用该技术通过使用位于同位素纯(99.99%12C)金刚石表面 500nm 内的单个氮空位中心来测量低频磁场噪声。光子噪声限制的灵敏度在 4.45s 的采集时间内达到 38 nT/sqrt[Hz],比仅使用两个自旋能级的实现提高了 sqrt[2]倍。对于较长的采集时间(>10 s),我们实现了高达 15 倍的磁灵敏度改进,这证明了我们的技术对热漂移的稳健性。我们将该技术应用于氮空位中心集合体,消除了纵向应变非均匀性引起的退相,灵敏度提高了 2.3 倍。