Suppr超能文献

影响用于肌肉骨骼软组织修复的细胞外基质衍生支架长期行为的因素。

Factors influencing the long-term behavior of extracellular matrix-derived scaffolds for musculoskeletal soft tissue repair.

作者信息

Rowland Christopher R, Little Dianne, Guilak Farshid

机构信息

Department of Orthopaedic Surgery and Biomedical Engineering, Duke University Medical Center, Durham, NC 27710, USA.

出版信息

J Long Term Eff Med Implants. 2012;22(3):181-93. doi: 10.1615/jlongtermeffmedimplants.2013006120.

Abstract

Musculoskeletal connective tissues such as tendon, ligament, and cartilage possess a limited ability for self-repair. Tissue engineering seeks to use combinations of cells, bioactive molecules, and biomaterials to develop new treatment options for the repair or replacement of damaged tissues. The use of native extracellular matrix as scaffold material for tissue engineering has become increasingly attractive because such tissues can not only provide structural support, but also regulate cell behavior. Although demineralized bone matrix has long been recognized for its osteoinductive abilities, recent studies have identified the ability of cartilage and tendon extracellular matrices to stimulate the differentiation of mesenchymal or adipose-derived adult stem cells toward chondrogenic or tenogenic lineages, respectively. This review discusses the motivation for fabricating scaffolds from musculoskeletal tissues, the in vitro and in vivo efficacy of these tissue-derived scaffolds, and various processing techniques such as decellularization or cross-linking that can mitigate immunogenic responses, moderate the degradation profile, and enhance the mechanical properties of these constructs following long-term implantation in vivo.

摘要

肌腱、韧带和软骨等肌肉骨骼结缔组织的自我修复能力有限。组织工程旨在利用细胞、生物活性分子和生物材料的组合来开发新的治疗方案,用于修复或替换受损组织。使用天然细胞外基质作为组织工程的支架材料变得越来越有吸引力,因为这类组织不仅能提供结构支撑,还能调节细胞行为。尽管脱矿骨基质长期以来因其骨诱导能力而得到认可,但最近的研究发现,软骨和肌腱细胞外基质分别具有刺激间充质或脂肪来源的成体干细胞向软骨生成或肌腱生成谱系分化的能力。本文综述了用肌肉骨骼组织制造支架的动机、这些组织衍生支架的体外和体内功效,以及各种处理技术,如脱细胞或交联,这些技术可以减轻免疫原性反应、调节降解过程,并在体内长期植入后增强这些构建体的机械性能。

相似文献

1
Factors influencing the long-term behavior of extracellular matrix-derived scaffolds for musculoskeletal soft tissue repair.
J Long Term Eff Med Implants. 2012;22(3):181-93. doi: 10.1615/jlongtermeffmedimplants.2013006120.
2
The Challenge in Using Mesenchymal Stromal Cells for Recellularization of Decellularized Cartilage.
Stem Cell Rev Rep. 2017 Feb;13(1):50-67. doi: 10.1007/s12015-016-9699-8.
6
TGF-β3 encapsulated PLCL scaffold by a supercritical CO2-HFIP co-solvent system for cartilage tissue engineering.
J Control Release. 2015 May 28;206:101-7. doi: 10.1016/j.jconrel.2015.03.026. Epub 2015 Mar 21.
10
Cell-derived decellularized extracellular matrix scaffolds for articular cartilage repair.
Int J Artif Organs. 2021 Apr;44(4):269-281. doi: 10.1177/0391398820953866. Epub 2020 Sep 18.

引用本文的文献

1
Engineered Tissue Graft for Repair of Injured Infraspinatus Rotator Cuff Tendon.
Tissue Eng Part A. 2023 Sep;29(17-18):471-480. doi: 10.1089/ten.TEA.2022.0196. Epub 2023 Aug 31.
2
Tendon-derived matrix crosslinking techniques for electrospun multi-layered scaffolds.
J Biomed Mater Res A. 2023 Dec;111(12):1875-1887. doi: 10.1002/jbm.a.37588. Epub 2023 Jul 25.
3
Tuning the Degradation Rate of Alginate-Based Bioinks for Bioprinting Functional Cartilage Tissue.
Biomedicines. 2022 Jul 7;10(7):1621. doi: 10.3390/biomedicines10071621.
4
The Role of Scaffolds in Tendon Tissue Engineering.
J Funct Biomater. 2020 Nov 1;11(4):78. doi: 10.3390/jfb11040078.
6
Current Status of Tissue-Engineered Scaffolds for Rotator Cuff Repair.
Tech Orthop. 2016 Jun;31(2):91-97. doi: 10.1097/BTO.0000000000000168.
7
Extracellular matrix-based biomaterial scaffolds and the host response.
Biomaterials. 2016 Apr;86:68-82. doi: 10.1016/j.biomaterials.2016.02.003. Epub 2016 Feb 3.
8
Fatigue damage of collagenous tissues: experiment, modeling and simulation studies.
J Long Term Eff Med Implants. 2015;25(1-2):55-73. doi: 10.1615/jlongtermeffmedimplants.2015011749.
9
The current state of scaffolds for musculoskeletal regenerative applications.
Nat Rev Rheumatol. 2015 Apr;11(4):213-22. doi: 10.1038/nrrheum.2015.27. Epub 2015 Mar 17.
10
Multilayered electrospun scaffolds for tendon tissue engineering.
Tissue Eng Part A. 2013 Dec;19(23-24):2594-604. doi: 10.1089/ten.TEA.2013.0165. Epub 2013 Aug 29.

本文引用的文献

1
Decellularized cartilage matrix as a novel biomatrix for cartilage tissue-engineering applications.
Tissue Eng Part A. 2012 Nov;18(21-22):2195-209. doi: 10.1089/ten.TEA.2011.0705. Epub 2012 Jul 20.
3
Mesenchymal stem cell fate is regulated by the composition and mechanical properties of collagen-glycosaminoglycan scaffolds.
J Mech Behav Biomed Mater. 2012 Jul;11:53-62. doi: 10.1016/j.jmbbm.2011.11.009. Epub 2011 Dec 3.
5
Anisotropic fibrous scaffolds for articular cartilage regeneration.
Tissue Eng Part A. 2012 Oct;18(19-20):2073-83. doi: 10.1089/ten.TEA.2011.0606. Epub 2012 Aug 3.
6
Chondrogenic differentiation of bone marrow-derived mesenchymal stem cells induced by acellular cartilage sheets.
Biomaterials. 2012 Aug;33(24):5832-40. doi: 10.1016/j.biomaterials.2012.04.054. Epub 2012 May 17.
7
Management of articular cartilage defects of the knee.
Phys Sportsmed. 2012 Feb;40(1):20-35. doi: 10.3810/psm.2012.02.1948.
10
The rationale for using microscopic units of a donor matrix in cartilage defect repair.
Cell Tissue Res. 2012 Mar;347(3):643-8. doi: 10.1007/s00441-012-1323-x. Epub 2012 Feb 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验