Suppr超能文献

核糖体共翻译泛素化和质量控制的原理。

Principles of cotranslational ubiquitination and quality control at the ribosome.

机构信息

Department of Biology, Stanford University, Stanford, CA 94305, USA.

出版信息

Mol Cell. 2013 May 9;50(3):379-93. doi: 10.1016/j.molcel.2013.03.010. Epub 2013 Apr 11.

Abstract

Achieving efficient cotranslational folding of complex proteomes poses a challenge for eukaryotic cells. Nascent polypeptides that emerge vectorially from the ribosome often cannot fold stably and may be susceptible to misfolding and degradation. The extent to which nascent chains are subject to cotranslational quality control and degradation remains unclear. Here, we directly and quantitatively assess cotranslational ubiquitination and identify, at a systems level, the determinants and factors governing this process. Cotranslational ubiquitination occurs at very low levels and is carried out by a complex network of E3 ubiquitin ligases. Ribosome-associated chaperones and cotranslational folding protect the majority of nascent chains from premature quality control. Nonetheless, a number of nascent chains whose intrinsic properties hinder efficient cotranslational folding remain susceptible for cotranslational ubiquitination. We find that quality control at the ribosome is achieved through a tiered system wherein nascent polypeptides have a chance to fold before becoming accessible to ubiquitination.

摘要

实现复杂蛋白质组的有效共翻译折叠对真核细胞来说是一个挑战。从核糖体上呈向量状出现的新生多肽往往不能稳定折叠,并且可能容易错误折叠和降解。新生链受到共翻译质量控制和降解的程度尚不清楚。在这里,我们直接和定量评估共翻译泛素化,并在系统水平上确定决定和影响这一过程的因素。共翻译泛素化发生在非常低的水平,并由一系列 E3 泛素连接酶完成。核糖体相关伴侣和共翻译折叠保护大多数新生链免受过早的质量控制。尽管如此,一些新生链由于其内在性质阻碍了有效的共翻译折叠,仍然容易受到共翻译泛素化的影响。我们发现,核糖体上的质量控制是通过一个分层系统实现的,其中新生多肽有机会在被泛素化之前折叠。

相似文献

1
Principles of cotranslational ubiquitination and quality control at the ribosome.
Mol Cell. 2013 May 9;50(3):379-93. doi: 10.1016/j.molcel.2013.03.010. Epub 2013 Apr 11.
4
False start: cotranslational protein ubiquitination and cytosolic protein quality control.
J Proteomics. 2014 Apr 4;100:92-101. doi: 10.1016/j.jprot.2013.08.005. Epub 2013 Aug 15.
6
The cotranslational function of ribosome-associated Hsp70 in eukaryotic protein homeostasis.
Cell. 2013 Jan 17;152(1-2):196-209. doi: 10.1016/j.cell.2012.12.001.
7
Distinct types of translation termination generate substrates for ribosome-associated quality control.
Nucleic Acids Res. 2016 Aug 19;44(14):6840-52. doi: 10.1093/nar/gkw566. Epub 2016 Jun 20.
8
Cotranslational assembly of protein complexes in eukaryotes revealed by ribosome profiling.
Nature. 2018 Sep;561(7722):268-272. doi: 10.1038/s41586-018-0462-y. Epub 2018 Aug 29.
9
Disome-seq reveals widespread ribosome collisions that promote cotranslational protein folding.
Genome Biol. 2021 Jan 5;22(1):16. doi: 10.1186/s13059-020-02256-0.
10
Nascent Polypeptide Domain Topology and Elongation Rate Direct the Cotranslational Hierarchy of Hsp70 and TRiC/CCT.
Mol Cell. 2019 Sep 19;75(6):1117-1130.e5. doi: 10.1016/j.molcel.2019.06.036. Epub 2019 Aug 7.

引用本文的文献

1
Decoding clinical diversity in monogenic TGFBR1 and TGFBR2 mutations: insights into the interplay of molecular mechanisms and hypomorphicity.
Front Cell Dev Biol. 2025 Jun 19;13:1580274. doi: 10.3389/fcell.2025.1580274. eCollection 2025.
2
Mechanistic Insights into Protein Biogenesis and Maturation on the Ribosome.
J Mol Biol. 2025 Feb 28:169056. doi: 10.1016/j.jmb.2025.169056.
3
Small Heat Shock Proteins: Protein Aggregation Amelioration and Neuro- and Age-Protective Roles.
Int J Mol Sci. 2025 Feb 11;26(4):1525. doi: 10.3390/ijms26041525.
4
Native Fold Delay and its implications for co-translational chaperone binding and protein aggregation.
Nat Commun. 2025 Feb 15;16(1):1673. doi: 10.1038/s41467-025-57033-z.
5
TanGIBLE: A selective probe for evaluating hydrophobicity-exposed defective proteins in live cells.
J Cell Biol. 2025 Mar 3;224(3). doi: 10.1083/jcb.202109010. Epub 2025 Jan 15.
7
Proteostasis and Its Role in Disease Development.
Cell Biochem Biophys. 2025 Jun;83(2):1725-1741. doi: 10.1007/s12013-024-01581-6. Epub 2024 Oct 18.
8
The ribosome lowers the entropic penalty of protein folding.
Nature. 2024 Sep;633(8028):232-239. doi: 10.1038/s41586-024-07784-4. Epub 2024 Aug 7.
10
Maximum entropy determination of mammalian proteome dynamics.
Proc Natl Acad Sci U S A. 2024 Apr 30;121(18):e2313107121. doi: 10.1073/pnas.2313107121. Epub 2024 Apr 23.

本文引用的文献

1
The cotranslational function of ribosome-associated Hsp70 in eukaryotic protein homeostasis.
Cell. 2013 Jan 17;152(1-2):196-209. doi: 10.1016/j.cell.2012.12.001.
2
Evolutionary conservation of codon optimality reveals hidden signatures of cotranslational folding.
Nat Struct Mol Biol. 2013 Feb;20(2):237-43. doi: 10.1038/nsmb.2466. Epub 2012 Dec 23.
3
Aneuploidy causes proteotoxic stress in yeast.
Genes Dev. 2012 Dec 15;26(24):2696-708. doi: 10.1101/gad.207407.112. Epub 2012 Dec 7.
5
6
A network of ubiquitin ligases is important for the dynamics of misfolded protein aggregates in yeast.
J Biol Chem. 2012 Jul 6;287(28):23911-22. doi: 10.1074/jbc.M112.341164. Epub 2012 May 16.
7
Ribosome-associated chaperones as key players in proteostasis.
Trends Biochem Sci. 2012 Jul;37(7):274-83. doi: 10.1016/j.tibs.2012.03.002. Epub 2012 Apr 13.
8
The Ccr4--not complex.
Gene. 2012 Jan 15;492(1):42-53. doi: 10.1016/j.gene.2011.09.033. Epub 2011 Oct 15.
10
Systematic and quantitative assessment of the ubiquitin-modified proteome.
Mol Cell. 2011 Oct 21;44(2):325-40. doi: 10.1016/j.molcel.2011.08.025. Epub 2011 Sep 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验