Department of Biology, Stanford University, Stanford, CA 94305, USA.
Mol Cell. 2013 May 9;50(3):379-93. doi: 10.1016/j.molcel.2013.03.010. Epub 2013 Apr 11.
Achieving efficient cotranslational folding of complex proteomes poses a challenge for eukaryotic cells. Nascent polypeptides that emerge vectorially from the ribosome often cannot fold stably and may be susceptible to misfolding and degradation. The extent to which nascent chains are subject to cotranslational quality control and degradation remains unclear. Here, we directly and quantitatively assess cotranslational ubiquitination and identify, at a systems level, the determinants and factors governing this process. Cotranslational ubiquitination occurs at very low levels and is carried out by a complex network of E3 ubiquitin ligases. Ribosome-associated chaperones and cotranslational folding protect the majority of nascent chains from premature quality control. Nonetheless, a number of nascent chains whose intrinsic properties hinder efficient cotranslational folding remain susceptible for cotranslational ubiquitination. We find that quality control at the ribosome is achieved through a tiered system wherein nascent polypeptides have a chance to fold before becoming accessible to ubiquitination.
实现复杂蛋白质组的有效共翻译折叠对真核细胞来说是一个挑战。从核糖体上呈向量状出现的新生多肽往往不能稳定折叠,并且可能容易错误折叠和降解。新生链受到共翻译质量控制和降解的程度尚不清楚。在这里,我们直接和定量评估共翻译泛素化,并在系统水平上确定决定和影响这一过程的因素。共翻译泛素化发生在非常低的水平,并由一系列 E3 泛素连接酶完成。核糖体相关伴侣和共翻译折叠保护大多数新生链免受过早的质量控制。尽管如此,一些新生链由于其内在性质阻碍了有效的共翻译折叠,仍然容易受到共翻译泛素化的影响。我们发现,核糖体上的质量控制是通过一个分层系统实现的,其中新生多肽有机会在被泛素化之前折叠。