Stein Kevin C, Kriel Allison, Frydman Judith
Department of Biology, Stanford University, Stanford, CA 94305, USA.
Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA.
Mol Cell. 2019 Sep 19;75(6):1117-1130.e5. doi: 10.1016/j.molcel.2019.06.036. Epub 2019 Aug 7.
Cotranslational protein folding requires assistance from elaborate ribosome-associated chaperone networks. It remains unclear how the changing information in a growing nascent polypeptide dictates the recruitment of functionally distinct chaperones. Here, we used ribosome profiling to define the principles governing the cotranslational action of the chaperones TRiC/CCT and Hsp70/Ssb. We show that these chaperones are sequentially recruited to specific sites within domain-encoding regions of select nascent polypeptides. Hsp70 associates first, binding select sites throughout domains, whereas TRiC associates later, upon the emergence of nearly complete domains that expose an unprotected hydrophobic surface. This suggests that transient topological properties of nascent folding intermediates drive sequential chaperone association. Moreover, cotranslational recruitment of both TRiC and Hsp70 correlated with translation elongation slowdowns. We propose that the temporal modulation of the nascent chain structural landscape is coordinated with local elongation rates to regulate the hierarchical action of Hsp70 and TRiC for cotranslational folding.
共翻译蛋白质折叠需要复杂的核糖体相关伴侣网络的协助。目前尚不清楚正在生长的新生多肽中不断变化的信息是如何决定功能不同的伴侣蛋白的招募的。在这里,我们使用核糖体分析来定义指导伴侣蛋白TRiC/CCT和Hsp70/Ssb共翻译作用的原则。我们表明,这些伴侣蛋白被依次招募到特定新生多肽的结构域编码区域内的特定位点。Hsp70首先结合,在整个结构域中结合特定位点,而TRiC则在几乎完整的结构域出现后结合,这些结构域暴露了未受保护的疏水表面。这表明新生折叠中间体的瞬态拓扑性质驱动了伴侣蛋白的顺序结合。此外,TRiC和Hsp70的共翻译招募与翻译延伸减慢相关。我们提出,新生链结构景观的时间调制与局部延伸率相协调,以调节Hsp70和TRiC在共翻译折叠中的分层作用。