Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA.
Neuron. 2013 Apr 10;78(1):109-23. doi: 10.1016/j.neuron.2013.01.036.
Neuronal microtubules support intracellular transport, facilitate axon growth, and form a basis for neuronal morphology. While microtubules in nonneuronal cells are depolymerized by cold, Ca(2+), or antimitotic drugs, neuronal microtubules are unusually stable. Such stability is important for normal axon growth and maintenance, while hyperstability may compromise neuronal function in aging and degeneration. Though mechanisms for stability are unclear, studies suggest that stable microtubules contain biochemically distinct tubulins that are more basic than conventional tubulins. Transglutaminase-catalyzed posttranslational incorporation of polyamines is one of the few modifications of intracellular proteins that add positive charges. Here we show that neuronal tubulin can be polyaminated by transglutaminase. Endogenous brain transglutaminase-catalyzed polyaminated tubulins have the biochemical characteristics of neuronal stable microtubules. Inhibiting polyamine synthesis or transglutaminase activity significantly decreases microtubule stability in vitro and in vivo. Together, these findings suggest that transglutaminase-catalyzed polyamination of tubulins stabilizes microtubules essential for unique neuronal structures and functions.
神经元微管支持细胞内运输,促进轴突生长,并为神经元形态提供基础。虽然非神经元细胞中的微管可以通过冷、Ca(2+)或抗有丝分裂药物解聚,但神经元微管异常稳定。这种稳定性对于正常的轴突生长和维持很重要,而过度稳定可能会损害衰老和退化过程中的神经元功能。尽管稳定机制尚不清楚,但研究表明稳定的微管含有生化上不同的微管蛋白,其碱性比传统的微管蛋白更强。转谷氨酰胺酶催化的多胺的翻译后掺入是增加正电荷的少数几种细胞内蛋白修饰之一。在这里,我们表明神经元微管可以被转谷氨酰胺酶多胺化。内源性脑转谷氨酰胺酶催化的多胺化微管蛋白具有神经元稳定微管的生化特征。抑制多胺合成或转谷氨酰胺酶活性显著降低体外和体内微管的稳定性。总之,这些发现表明转谷氨酰胺酶催化的微管蛋白多胺化稳定了对于独特的神经元结构和功能至关重要的微管。