Suppr超能文献

醛脱氢酶 1A3 功能丧失导致双侧无眼/小眼和视神经及视交叉发育不良。

ALDH1A3 loss of function causes bilateral anophthalmia/microphthalmia and hypoplasia of the optic nerve and optic chiasm.

机构信息

Division of Genetics, Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143-0748, USA.

出版信息

Hum Mol Genet. 2013 Aug 15;22(16):3250-8. doi: 10.1093/hmg/ddt179. Epub 2013 Apr 15.

Abstract

The major active retinoid, all-trans retinoic acid, has long been recognized as critical for the development of several organs, including the eye. Mutations in STRA6, the gene encoding the cellular receptor for vitamin A, in patients with Matthew-Wood syndrome and anophthalmia/microphthalmia (A/M), have previously demonstrated the importance of retinol metabolism in human eye disease. We used homozygosity mapping combined with next-generation sequencing to interrogate patients with anophthalmia and microphthalmia for new causative genes. We used whole-exome and whole-genome sequencing to study a family with two affected brothers with bilateral A/M and a simplex case with bilateral anophthalmia and hypoplasia of the optic nerve and optic chiasm. Analysis of novel sequence variants revealed homozygosity for two nonsense mutations in ALDH1A3, c.568A>G, predicting p.Lys190*, in the familial cases, and c.1165A>T, predicting p.Lys389*, in the simplex case. Both mutations predict nonsense-mediated decay and complete loss of function. We performed antisense morpholino (MO) studies in Danio rerio to characterize the developmental effects of loss of Aldh1a3 function. MO-injected larvae showed a significant reduction in eye size, and aberrant axonal projections to the tectum were noted. We conclude that ALDH1A3 loss of function causes anophthalmia and aberrant eye development in humans and in animal model systems.

摘要

主要的活性维甲酸,全反式视黄酸,长期以来一直被认为对包括眼睛在内的几种器官的发育至关重要。Matthew-Wood 综合征和无眼症/小眼症(A/M)患者中 STRA6 基因突变,该基因编码维生素 A 的细胞受体,先前证明了视黄醇代谢在人类眼病中的重要性。我们使用纯合子作图结合下一代测序来研究无眼症和小眼症患者的新致病基因。我们使用外显子组和全基因组测序研究了一个有两个受影响兄弟的家庭,他们患有双侧 A/M 和一个单纯病例,双侧视神经和视交叉发育不良。对新序列变异的分析显示,在家族病例中,ALDH1A3 中的两个无义突变纯合,c.568A>G,预测 p.Lys190*,在单纯病例中,c.1165A>T,预测 p.Lys389*。这两种突变都预测无义介导的衰变和完全丧失功能。我们在 Danio rerio 中进行了反义形态发生素(MO)研究,以表征 Aldh1a3 功能丧失的发育影响。注射 MO 的幼虫眼睛明显变小,并且注意到轴突向顶盖的异常投射。我们得出结论,ALDH1A3 功能丧失会导致人类和动物模型系统中的无眼症和异常眼睛发育。

相似文献

1
ALDH1A3 loss of function causes bilateral anophthalmia/microphthalmia and hypoplasia of the optic nerve and optic chiasm.
Hum Mol Genet. 2013 Aug 15;22(16):3250-8. doi: 10.1093/hmg/ddt179. Epub 2013 Apr 15.
3
Mutations in ALDH1A3 represent a frequent cause of microphthalmia/anophthalmia in consanguineous families.
Hum Mutat. 2014 Aug;35(8):949-53. doi: 10.1002/humu.22580. Epub 2014 Jun 3.
4
Mutations in ALDH1A3 cause microphthalmia.
Clin Genet. 2013 Aug;84(2):128-31. doi: 10.1111/cge.12184. Epub 2013 May 27.
5
ALDH1A3 mutations cause recessive anophthalmia and microphthalmia.
Am J Hum Genet. 2013 Feb 7;92(2):265-70. doi: 10.1016/j.ajhg.2012.12.003. Epub 2013 Jan 9.
6
Novel splice-site and missense mutations in the ALDH1A3 gene underlying autosomal recessive anophthalmia/microphthalmia.
Br J Ophthalmol. 2014 Jun;98(6):832-40. doi: 10.1136/bjophthalmol-2013-304058. Epub 2014 Feb 25.
7
A missense mutation in ALDH1A3 causes isolated microphthalmia/anophthalmia in nine individuals from an inbred Muslim kindred.
Eur J Hum Genet. 2014 Mar;22(3):419-22. doi: 10.1038/ejhg.2013.157. Epub 2013 Jul 24.
8
Incomplete penetrance of biallelic ALDH1A3 mutations.
Eur J Med Genet. 2016 Apr;59(4):215-8. doi: 10.1016/j.ejmg.2016.02.004. Epub 2016 Feb 10.
9
Recessive and dominant mutations in retinoic acid receptor beta in cases with microphthalmia and diaphragmatic hernia.
Am J Hum Genet. 2013 Oct 3;93(4):765-72. doi: 10.1016/j.ajhg.2013.08.014. Epub 2013 Sep 26.

引用本文的文献

1
Vitamin A supply in the eye and establishment of the visual cycle.
Curr Top Dev Biol. 2025;161:319-348. doi: 10.1016/bs.ctdb.2024.09.003. Epub 2024 Oct 2.
2
Dynamic enhancer landscapes in human craniofacial development.
Nat Commun. 2024 Mar 6;15(1):2030. doi: 10.1038/s41467-024-46396-4.
3
Zebrafish as a Model to Study Retinoic Acid Signaling in Development and Disease.
Biomedicines. 2023 Apr 15;11(4):1180. doi: 10.3390/biomedicines11041180.
4
Clinical and genetic analysis further delineates the phenotypic spectrum of ALDH1A3-related anophthalmia and microphthalmia.
Eur J Hum Genet. 2023 Oct;31(10):1175-1180. doi: 10.1038/s41431-023-01342-8. Epub 2023 Mar 31.
5
The Expanding Role of Cancer Stem Cell Marker ALDH1A3 in Cancer and Beyond.
Cancers (Basel). 2023 Jan 13;15(2):492. doi: 10.3390/cancers15020492.
9
Molecular components affecting ocular carotenoid and retinoid homeostasis.
Prog Retin Eye Res. 2021 Jan;80:100864. doi: 10.1016/j.preteyeres.2020.100864. Epub 2020 Apr 25.
10
Genetics of syndromic ocular coloboma: CHARGE and COACH syndromes.
Exp Eye Res. 2020 Apr;193:107940. doi: 10.1016/j.exer.2020.107940. Epub 2020 Feb 4.

本文引用的文献

1
ALDH1A3 mutations cause recessive anophthalmia and microphthalmia.
Am J Hum Genet. 2013 Feb 7;92(2):265-70. doi: 10.1016/j.ajhg.2012.12.003. Epub 2013 Jan 9.
2
Predicting the functional effect of amino acid substitutions and indels.
PLoS One. 2012;7(10):e46688. doi: 10.1371/journal.pone.0046688. Epub 2012 Oct 8.
3
Early retinoic acid deprivation in developing zebrafish results in microphthalmia.
Vis Neurosci. 2012 Sep;29(4-5):219-28. doi: 10.1017/S0952523812000296.
4
Retinoic acid signalling during development.
Development. 2012 Mar;139(5):843-58. doi: 10.1242/dev.065938.
5
SnapShot: retinoic acid signaling.
Cell. 2011 Dec 9;147(6):1422-1422.e1. doi: 10.1016/j.cell.2011.11.034.
6
Eye development genes and known syndromes.
Mol Genet Metab. 2011 Dec;104(4):448-56. doi: 10.1016/j.ymgme.2011.09.029. Epub 2011 Sep 29.
9
High frequency of submicroscopic chromosomal deletions in patients with idiopathic congenital eye malformations.
Am J Ophthalmol. 2011 Jun;151(6):1087-1094.e45. doi: 10.1016/j.ajo.2010.11.025. Epub 2011 Feb 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验