Suppr超能文献

利用气相色谱/燃烧/热解同位素比质谱法对生态和地质来源的甲烷进行 δ13C 和 δ2H 测量。

δ13C and δ2H measurement of methane from ecological and geological sources by gas chromatography/combustion/pyrolysis isotope-ratio mass spectrometry.

机构信息

Stable Isotope Facility, University of California, Davis, CA 95616, USA.

出版信息

Rapid Commun Mass Spectrom. 2013 May 15;27(9):1036-44. doi: 10.1002/rcm.6549.

Abstract

RATIONALE

The carbon and hydrogen isotopes of methane are useful in differentiating biological (e.g. wetlands, ruminants, biomass burning) and geological methane sources (e.g. fossil fuels, gas hydrates), as well as quantifying pathways of methanotrophism. Continuous-flow isotopic measurements of methane present a set of analytical challenges, including sample size restrictions and separation of CH4 from atmosphere, hydrocarbons, and CO2 .

METHODS

Small-scale modifications were made to a commercial trace-gas preconcentration and sampling unit (Thermo Scientific PreCon-GasBench) for improved isotopic analysis of methane (δ(13)C/δ(2)H) across a range of gas concentrations.

RESULTS

The long-term reproducibility of δ(13)C-CH4 values is less than ±0.2‰ (1σ). The limit-of-quantitation of δ(13)C-CH4 values is less than 0.8 nmol, conveniently measurable within standard gas sampling vials. A reproducibility of better than ±4‰ (1σ) is regularly achieved for δ(2) H values from sample sizes greater than 2 nmol. The range of measurement, for both δ(13)C and δ(2)H values, is easily extended from ambient concentration (~1.7 ppm-v) for preconcentrated samples to percent methane concentrations under subsampling.

CONCLUSIONS

The automated measurement of δ(13)C-CH4 and δ(2)H-CH4 values, from ambient to percentage concentrations, is possible with minimal modifications to a commercial preconcentration/gas chromatography inlet. Sample matrix interferences (CO2 , Cn Hy , air) are eliminated and simultaneous isotopic measurements of methane and CO2 and/or C1 -C4 light hydrocarbons are possible, while still retaining functionality for isotopic measurements of other gas species (e.g. CO2, N2, O2).

摘要

原理

甲烷的碳和氢同位素可用于区分生物(如湿地、反刍动物、生物质燃烧)和地质甲烷源(如化石燃料、天然气水合物),并量化甲烷营养途径。甲烷的连续流动同位素测量存在一系列分析挑战,包括样品量限制以及甲烷与大气、碳氢化合物和二氧化碳的分离。

方法

对商业痕量气体预浓缩和采样单元(Thermo Scientific PreCon-GasBench)进行了小规模修改,以改进甲烷(δ(13)C/δ(2)H)在一系列气体浓度下的同位素分析。

结果

δ(13)C-CH4 值的长期重现性小于±0.2‰(1σ)。δ(13)C-CH4 值的定量限小于 0.8 nmol,可在标准气体采样小瓶中方便地测量。对于大于 2 nmol 的样品,δ(2)H 值的重现性通常优于±4‰(1σ)。对于 δ(13)C 和 δ(2)H 值,测量范围很容易从环境浓度(~1.7 ppm-v)扩展到亚采样时的甲烷百分比浓度。

结论

通过对商业预浓缩/气相色谱进样口进行最小修改,即可实现从环境浓度到百分比浓度的 δ(13)C-CH4 和 δ(2)H-CH4 值的自动测量。消除了样品基质干扰(CO2、Cn Hy、空气),并且可以同时测量甲烷和 CO2 和/或 C1-C4 轻质碳氢化合物的同位素,同时仍然保留对其他气体物种(如 CO2、N2、O2)的同位素测量功能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验