Suppr超能文献

连续且自动化的 CO、CH 和 N O 稳定同位素分析,为基于无人机的采样铺平了道路。

Successive and automated stable isotope analysis of CO , CH and N O paving the way for unmanned aerial vehicle-based sampling.

机构信息

University of Natural Resources and Life Sciences Vienna, Institute of Soil Research, Konrad-Lorenz-Straße 24, Tulln, 3430, Austria.

出版信息

Rapid Commun Mass Spectrom. 2020 Dec 30;34(24):e8929. doi: 10.1002/rcm.8929.

Abstract

RATIONALE

Measurement of greenhouse gas (GHG) concentrations and isotopic compositions in the atmosphere is a valuable tool for predicting their sources and sinks, and ultimately how they affect Earth's climate. Easy access to unmanned aerial vehicles (UAVs) has opened up new opportunities for remote gas sampling and provides logistical and economic opportunities to improve GHG measurements.

METHODS

This study presents synchronized gas chromatography/isotope ratio mass spectrometry (GC/IRMS) methods for the analysis of atmospheric gas samples (20-mL  glass vessels) to determine the stable isotope ratios and concentrations of CO , CH and N O. To our knowledge there is no comprehensive GC/IRMS setup for successive measurement of CO , CH and N O analysis meshed with a UAV-based sampling system. The systems were built using off-the-shelf instruments augmented with minor modifications.

RESULTS

The precision of working gas standards achieved for δ C and δ O values of CO was 0.2‰ and 0.3‰, respectively. The mid-term precision for δ C and δ N values of CH and N O working gas standards was 0.4‰ and 0.3‰, respectively. Injection quantities of working gas standards indicated a relative standard deviation of 1%, 5% and 5% for CO , CH and N O, respectively. Measurements of atmospheric air samples demonstrated a standard deviation of 0.3‰ and 0.4‰ for the δ C and δ O values, respectively, of CO , 0.5‰ for the δ C value of CH and 0.3‰ for the δ N value of N O.

CONCLUSIONS

Results from internal calibration and field sample analysis, as well as comparisons with similar measurement techniques, suggest that the method is applicable for the stable isotope analysis of these three important GHGs. In contrast to previously reported findings, the presented method enables successive analysis of all three GHGs from a single ambient atmospheric gas sample.

摘要

原理

测量大气中的温室气体 (GHG) 浓度和同位素组成是预测其源和汇的有价值的工具,最终可以了解它们如何影响地球的气候。无人飞行器 (UAV) 的便捷使用为远程气体采样开辟了新的机会,并为改善 GHG 测量提供了后勤和经济机会。

方法

本研究提出了同步气相色谱/同位素比质谱 (GC/IRMS) 方法,用于分析大气气体样品(20 毫升玻璃容器),以确定 CO、CH 和 N O 的稳定同位素比值和浓度。据我们所知,目前还没有一种综合的 GC/IRMS 装置能够连续测量与基于无人机的采样系统相结合的 CO、CH 和 N O 分析。这些系统是使用现成的仪器构建的,并进行了少量修改。

结果

CO 的 δ C 和 δ O 值工作气体标准的精密度分别达到 0.2‰和 0.3‰。CH 和 N O 工作气体标准的 δ C 和 δ N 值的中期精密度分别为 0.4‰和 0.3‰。工作气体标准的注入量分别指示 CO、CH 和 N O 的相对标准偏差为 1%、5%和 5%。大气空气样品的测量结果表明,CO 的 δ C 和 δ O 值的标准偏差分别为 0.3‰和 0.4‰,CH 的 δ C 值为 0.5‰,N O 的 δ N 值为 0.3‰。

结论

内部校准和现场样品分析的结果以及与类似测量技术的比较表明,该方法适用于这三种重要 GHG 的稳定同位素分析。与之前报道的结果相比,所提出的方法能够从单个环境大气气体样品中连续分析所有三种 GHG。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a4d/7540016/222a2688b3fb/RCM-34-e8929-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验