Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
Mol Cell Proteomics. 2013 Jul;12(7):1995-2005. doi: 10.1074/mcp.M112.025742. Epub 2013 Apr 16.
Mass spectrometry (MS)-based quantitative proteomics has matured into a methodology able to detect and quantitate essentially all proteins of model microorganisms, allowing for unprecedented depth in systematic protein analyses. The most accurate quantitation approaches currently require lysine auxotrophic strains, which precludes analysis of most existing mutants, strain collections, or commercially important strains (e.g. those used for brewing or for the biotechnological production of metabolites). Here, we used MS-based proteomics to determine the global response of prototrophic yeast and bacteria to exogenous lysine. Unexpectedly, down-regulation of lysine synthesis in the presence of exogenous lysine is achieved via different mechanisms in different yeast strains. In each case, however, lysine in the medium down-regulates its biosynthesis, allowing for metabolic proteome labeling with heavy-isotope-containing lysine. This strategy of native stable isotope labeling by amino acids in cell culture (nSILAC) overcomes the limitations of previous approaches and can be used for the efficient production of protein standards for absolute SILAC quantitation in model microorganisms. As proof of principle, we have used nSILAC to globally analyze yeast proteome changes during salt stress.
基于质谱(MS)的定量蛋白质组学已经发展成为一种能够检测和定量几乎所有模式微生物蛋白质的方法,使系统蛋白质分析达到了前所未有的深度。目前最准确的定量方法需要赖氨酸营养缺陷型菌株,这排除了对大多数现有突变体、菌株库或商业上重要菌株(例如用于酿造或生物技术生产代谢物的菌株)的分析。在这里,我们使用基于 MS 的蛋白质组学来确定原生酵母和细菌对外源赖氨酸的整体反应。出乎意料的是,在外源赖氨酸存在的情况下,赖氨酸合成的下调是通过不同酵母菌株的不同机制实现的。然而,在每种情况下,培养基中的赖氨酸都会下调其生物合成,从而可以用含有重同位素的赖氨酸对代谢蛋白质组进行标记。这种细胞培养中氨基酸的天然稳定同位素标记(nSILAC)策略克服了以前方法的局限性,可用于高效生产蛋白质标准品,用于模型微生物中绝对 SILAC 定量。作为原理验证,我们使用 nSILAC 对盐胁迫过程中酵母蛋白质组的全局变化进行了分析。