Suppr超能文献

天然 SILAC:基于赖氨酸合成调控的营养缺陷型微生物蛋白质代谢标记。

Native SILAC: metabolic labeling of proteins in prototroph microorganisms based on lysine synthesis regulation.

机构信息

Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.

出版信息

Mol Cell Proteomics. 2013 Jul;12(7):1995-2005. doi: 10.1074/mcp.M112.025742. Epub 2013 Apr 16.

Abstract

Mass spectrometry (MS)-based quantitative proteomics has matured into a methodology able to detect and quantitate essentially all proteins of model microorganisms, allowing for unprecedented depth in systematic protein analyses. The most accurate quantitation approaches currently require lysine auxotrophic strains, which precludes analysis of most existing mutants, strain collections, or commercially important strains (e.g. those used for brewing or for the biotechnological production of metabolites). Here, we used MS-based proteomics to determine the global response of prototrophic yeast and bacteria to exogenous lysine. Unexpectedly, down-regulation of lysine synthesis in the presence of exogenous lysine is achieved via different mechanisms in different yeast strains. In each case, however, lysine in the medium down-regulates its biosynthesis, allowing for metabolic proteome labeling with heavy-isotope-containing lysine. This strategy of native stable isotope labeling by amino acids in cell culture (nSILAC) overcomes the limitations of previous approaches and can be used for the efficient production of protein standards for absolute SILAC quantitation in model microorganisms. As proof of principle, we have used nSILAC to globally analyze yeast proteome changes during salt stress.

摘要

基于质谱(MS)的定量蛋白质组学已经发展成为一种能够检测和定量几乎所有模式微生物蛋白质的方法,使系统蛋白质分析达到了前所未有的深度。目前最准确的定量方法需要赖氨酸营养缺陷型菌株,这排除了对大多数现有突变体、菌株库或商业上重要菌株(例如用于酿造或生物技术生产代谢物的菌株)的分析。在这里,我们使用基于 MS 的蛋白质组学来确定原生酵母和细菌对外源赖氨酸的整体反应。出乎意料的是,在外源赖氨酸存在的情况下,赖氨酸合成的下调是通过不同酵母菌株的不同机制实现的。然而,在每种情况下,培养基中的赖氨酸都会下调其生物合成,从而可以用含有重同位素的赖氨酸对代谢蛋白质组进行标记。这种细胞培养中氨基酸的天然稳定同位素标记(nSILAC)策略克服了以前方法的局限性,可用于高效生产蛋白质标准品,用于模型微生物中绝对 SILAC 定量。作为原理验证,我们使用 nSILAC 对盐胁迫过程中酵母蛋白质组的全局变化进行了分析。

相似文献

1
Native SILAC: metabolic labeling of proteins in prototroph microorganisms based on lysine synthesis regulation.
Mol Cell Proteomics. 2013 Jul;12(7):1995-2005. doi: 10.1074/mcp.M112.025742. Epub 2013 Apr 16.
2
2nSILAC for Quantitative Proteomics of Prototrophic Baker's Yeast.
Methods Mol Biol. 2021;2228:253-270. doi: 10.1007/978-1-0716-1024-4_18.
3
Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) Technology in Fission Yeast.
Cold Spring Harb Protoc. 2017 Jun 1;2017(6):pdb.top079814. doi: 10.1101/pdb.top079814.
4
Complete Native Stable Isotope Labeling by Amino Acids of Saccharomyces cerevisiae for Global Proteomic Analysis.
Anal Chem. 2018 Sep 4;90(17):10501-10509. doi: 10.1021/acs.analchem.8b02557. Epub 2018 Aug 23.
5
Construction, Growth, and Harvesting of Fission Yeast Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) Strains.
Cold Spring Harb Protoc. 2017 Jun 1;2017(6):pdb.prot091678. doi: 10.1101/pdb.prot091678.
7
Feasibility of protein turnover studies in prototroph Saccharomyces cerevisiae strains.
Anal Chem. 2015 Apr 7;87(7):4008-14. doi: 10.1021/acs.analchem.5b00264. Epub 2015 Mar 26.
8
SILAC-Based Quantitative Phosphoproteomics in Yeast.
Methods Mol Biol. 2023;2603:103-115. doi: 10.1007/978-1-0716-2863-8_8.
9
Nic1 inactivation enables stable isotope labeling with 13C615N4-arginine in Schizosaccharomyces pombe.
Mol Cell Proteomics. 2015 Jan;14(1):243-50. doi: 10.1074/mcp.O114.045302. Epub 2014 Nov 3.
10
SILAC-Based Proteomic Analysis of Meiosis in the Fission Yeast Schizosaccharomyces pombe.
Methods Mol Biol. 2023;2603:19-29. doi: 10.1007/978-1-0716-2863-8_2.

引用本文的文献

1
Yeast Svf1 binds ceramides and contributes to sphingolipid metabolism at the ER cis-Golgi interface.
J Cell Biol. 2023 May 1;222(5). doi: 10.1083/jcb.202109162. Epub 2023 Mar 10.
2
Metabolic heterogeneity and cross-feeding within isogenic yeast populations captured by DILAC.
Nat Microbiol. 2023 Mar;8(3):441-454. doi: 10.1038/s41564-022-01304-8. Epub 2023 Feb 16.
3
The HOPS tethering complex is required to maintain signaling endosome identity and TORC1 activity.
J Cell Biol. 2022 May 2;221(5). doi: 10.1083/jcb.202109084. Epub 2022 Apr 9.
4
A lysosomal biogenesis map reveals the cargo spectrum of yeast vacuolar protein targeting pathways.
J Cell Biol. 2022 Apr 4;221(4). doi: 10.1083/jcb.202107148. Epub 2022 Feb 17.
5
Impact of Target Turnover on the Translation of Drug-Target Residence Time to Time-Dependent Antibacterial Activity.
ACS Infect Dis. 2021 Sep 10;7(9):2755-2763. doi: 10.1021/acsinfecdis.1c00317. Epub 2021 Aug 6.
6
Frequent Assembly of Chimeric Complexes in the Protein Interaction Network of an Interspecies Yeast Hybrid.
Mol Biol Evol. 2021 Apr 13;38(4):1384-1401. doi: 10.1093/molbev/msaa298.
7
Uptake of exogenous serine is important to maintain sphingolipid homeostasis in Saccharomyces cerevisiae.
PLoS Genet. 2020 Aug 26;16(8):e1008745. doi: 10.1371/journal.pgen.1008745. eCollection 2020 Aug.
8
AP-3 vesicle uncoating occurs after HOPS-dependent vacuole tethering.
EMBO J. 2020 Oct 15;39(20):e105117. doi: 10.15252/embj.2020105117. Epub 2020 Aug 25.
9
Live imaging of intra-lysosome pH in cell lines and primary neuronal culture using a novel genetically encoded biosensor.
Autophagy. 2021 Jun;17(6):1500-1518. doi: 10.1080/15548627.2020.1771858. Epub 2020 Jun 9.
10
Lowe syndrome-linked endocytic adaptors direct membrane cycling kinetics with OCRL in .
Mol Biol Cell. 2019 Aug 1;30(17):2268-2282. doi: 10.1091/mbc.E18-08-0510. Epub 2019 Jun 19.

本文引用的文献

1
Microbial engineering for the production of advanced biofuels.
Nature. 2012 Aug 16;488(7411):320-8. doi: 10.1038/nature11478.
2
Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in Saccharomyces cerevisiae.
Mol Cell Proteomics. 2012 Nov;11(11):1510-22. doi: 10.1074/mcp.M112.017251. Epub 2012 Aug 2.
3
Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present.
Anal Bioanal Chem. 2012 Sep;404(4):939-65. doi: 10.1007/s00216-012-6203-4. Epub 2012 Jul 8.
6
Mass spectrometry-based proteomics and network biology.
Annu Rev Biochem. 2012;81:379-405. doi: 10.1146/annurev-biochem-072909-100424.
7
Andromeda: a peptide search engine integrated into the MaxQuant environment.
J Proteome Res. 2011 Apr 1;10(4):1794-805. doi: 10.1021/pr101065j. Epub 2011 Feb 22.
8
Comparison of ultrafiltration units for proteomic and N-glycoproteomic analysis by the filter-aided sample preparation method.
Anal Biochem. 2011 Mar 15;410(2):307-9. doi: 10.1016/j.ab.2010.12.004. Epub 2010 Dec 6.
9
Mass spectrometry-based proteomics in cell biology.
J Cell Biol. 2010 Aug 23;190(4):491-500. doi: 10.1083/jcb.201004052.
10
A plasma-membrane E-MAP reveals links of the eisosome with sphingolipid metabolism and endosomal trafficking.
Nat Struct Mol Biol. 2010 Jul;17(7):901-8. doi: 10.1038/nsmb.1829. Epub 2010 Jun 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验