Suppr超能文献

对未知的健康恐惧:神经科学中计算模型参数拟合解释的观点。

A healthy fear of the unknown: perspectives on the interpretation of parameter fits from computational models in neuroscience.

机构信息

Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

出版信息

PLoS Comput Biol. 2013 Apr;9(4):e1003015. doi: 10.1371/journal.pcbi.1003015. Epub 2013 Apr 4.

Abstract

Fitting models to behavior is commonly used to infer the latent computational factors responsible for generating behavior. However, the complexity of many behaviors can handicap the interpretation of such models. Here we provide perspectives on problems that can arise when interpreting parameter fits from models that provide incomplete descriptions of behavior. We illustrate these problems by fitting commonly used and neurophysiologically motivated reinforcement-learning models to simulated behavioral data sets from learning tasks. These model fits can pass a host of standard goodness-of-fit tests and other model-selection diagnostics even when the models do not provide a complete description of the behavioral data. We show that such incomplete models can be misleading by yielding biased estimates of the parameters explicitly included in the models. This problem is particularly pernicious when the neglected factors are unknown and therefore not easily identified by model comparisons and similar methods. An obvious conclusion is that a parsimonious description of behavioral data does not necessarily imply an accurate description of the underlying computations. Moreover, general goodness-of-fit measures are not a strong basis to support claims that a particular model can provide a generalized understanding of the computations that govern behavior. To help overcome these challenges, we advocate the design of tasks that provide direct reports of the computational variables of interest. Such direct reports complement model-fitting approaches by providing a more complete, albeit possibly more task-specific, representation of the factors that drive behavior. Computational models then provide a means to connect such task-specific results to a more general algorithmic understanding of the brain.

摘要

将模型拟合到行为中通常用于推断产生行为的潜在计算因素。然而,许多行为的复杂性可能会妨碍对这些模型的解释。本文提供了一些观点,讨论了当模型对行为的描述不完整时,从模型参数拟合中可能出现的问题。我们通过将常用的、具有神经生理学意义的强化学习模型拟合到学习任务的模拟行为数据集上来举例说明这些问题。即使模型没有对行为数据进行完整描述,这些模型拟合也可以通过一系列标准的拟合优度测试和其他模型选择诊断。我们表明,即使模型通过了这些测试,不完整的模型也可能会产生有偏差的参数估计,从而产生误导。当被忽略的因素未知且无法通过模型比较和类似方法轻易识别时,这个问题尤其严重。一个明显的结论是,对行为数据的简洁描述并不一定意味着对潜在计算的准确描述。此外,一般的拟合优度度量并不是支持特定模型可以提供对控制行为的计算的一般性理解的有力依据。为了帮助克服这些挑战,我们提倡设计提供感兴趣的计算变量的直接报告的任务。这种直接报告通过提供更完整的、尽管可能更特定于任务的驱动行为的因素表示,与模型拟合方法相辅相成。然后,计算模型可以将这些特定于任务的结果与对大脑的更一般算法理解联系起来。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05fe/3617224/b9ca13338b35/pcbi.1003015.g001.jpg

相似文献

1
A healthy fear of the unknown: perspectives on the interpretation of parameter fits from computational models in neuroscience.
PLoS Comput Biol. 2013 Apr;9(4):e1003015. doi: 10.1371/journal.pcbi.1003015. Epub 2013 Apr 4.
2
Revisiting the importance of model fitting for model-based fMRI: It does matter in computational psychiatry.
PLoS Comput Biol. 2021 Feb 9;17(2):e1008738. doi: 10.1371/journal.pcbi.1008738. eCollection 2021 Feb.
3
The interpretation of computational model parameters depends on the context.
Elife. 2022 Nov 4;11:e75474. doi: 10.7554/eLife.75474.
4
Ten simple rules for the computational modeling of behavioral data.
Elife. 2019 Nov 26;8:e49547. doi: 10.7554/eLife.49547.
5
Computational neuroscience across the lifespan: Promises and pitfalls.
Dev Cogn Neurosci. 2018 Oct;33:42-53. doi: 10.1016/j.dcn.2017.09.008. Epub 2017 Oct 13.
6
Joint modeling of reaction times and choice improves parameter identifiability in reinforcement learning models.
J Neurosci Methods. 2019 Apr 1;317:37-44. doi: 10.1016/j.jneumeth.2019.01.006. Epub 2019 Jan 18.
7
Computational psychiatry.
Trends Cogn Sci. 2012 Jan;16(1):72-80. doi: 10.1016/j.tics.2011.11.018. Epub 2011 Dec 14.
8
Hierarchically organized behavior and its neural foundations: a reinforcement learning perspective.
Cognition. 2009 Dec;113(3):262-280. doi: 10.1016/j.cognition.2008.08.011. Epub 2008 Oct 15.
9
Divide et impera: subgoaling reduces the complexity of probabilistic inference and problem solving.
J R Soc Interface. 2015 Mar 6;12(104):20141335. doi: 10.1098/rsif.2014.1335.
10
A flexible and generalizable model of online latent-state learning.
PLoS Comput Biol. 2019 Sep 16;15(9):e1007331. doi: 10.1371/journal.pcbi.1007331. eCollection 2019 Sep.

引用本文的文献

2
Active reinforcement learning versus action bias and hysteresis: control with a mixture of experts and nonexperts.
PLoS Comput Biol. 2024 Mar 29;20(3):e1011950. doi: 10.1371/journal.pcbi.1011950. eCollection 2024 Mar.
3
Double dissociation of dopamine and subthalamic nucleus stimulation on effortful cost/benefit decision making.
Curr Biol. 2024 Feb 5;34(3):655-660.e3. doi: 10.1016/j.cub.2023.12.045. Epub 2024 Jan 5.
4
The computational challenge of social learning.
Trends Cogn Sci. 2021 Dec;25(12):1045-1057. doi: 10.1016/j.tics.2021.09.002. Epub 2021 Sep 25.
5
Brain-based mechanisms of late-life depression: Implications for novel interventions.
Semin Cell Dev Biol. 2021 Aug;116:169-179. doi: 10.1016/j.semcdb.2021.05.002. Epub 2021 May 12.
6
Revisiting the importance of model fitting for model-based fMRI: It does matter in computational psychiatry.
PLoS Comput Biol. 2021 Feb 9;17(2):e1008738. doi: 10.1371/journal.pcbi.1008738. eCollection 2021 Feb.
7
Heuristic and optimal policy computations in the human brain during sequential decision-making.
Nat Commun. 2018 Jan 23;9(1):325. doi: 10.1038/s41467-017-02750-3.
8
Beliefs about Others' Abilities Alter Learning from Observation.
Sci Rep. 2017 Nov 23;7(1):16173. doi: 10.1038/s41598-017-16307-3.
9
Computational neuroscience across the lifespan: Promises and pitfalls.
Dev Cogn Neurosci. 2018 Oct;33:42-53. doi: 10.1016/j.dcn.2017.09.008. Epub 2017 Oct 13.
10
Understanding psychiatric disorder by capturing ecologically relevant features of learning and decision-making.
Behav Brain Res. 2018 Dec 14;355:56-75. doi: 10.1016/j.bbr.2017.09.050. Epub 2017 Sep 28.

本文引用的文献

1
2
Role of rodent secondary motor cortex in value-based action selection.
Nat Neurosci. 2011 Aug 14;14(9):1202-8. doi: 10.1038/nn.2881.
3
A bayesian foundation for individual learning under uncertainty.
Front Hum Neurosci. 2011 May 2;5:39. doi: 10.3389/fnhum.2011.00039. eCollection 2011.
4
Dopaminergic genes predict individual differences in susceptibility to confirmation bias.
J Neurosci. 2011 Apr 20;31(16):6188-98. doi: 10.1523/JNEUROSCI.6486-10.2011.
5
Are computational models of any use to psychiatry?
Neural Netw. 2011 Aug;24(6):544-51. doi: 10.1016/j.neunet.2011.03.001. Epub 2011 Mar 10.
6
From reinforcement learning models to psychiatric and neurological disorders.
Nat Neurosci. 2011 Feb;14(2):154-62. doi: 10.1038/nn.2723.
8
Tonic dopamine modulates exploitation of reward learning.
Front Behav Neurosci. 2010 Nov 4;4:170. doi: 10.3389/fnbeh.2010.00170. eCollection 2010.
9
An approximately Bayesian delta-rule model explains the dynamics of belief updating in a changing environment.
J Neurosci. 2010 Sep 15;30(37):12366-78. doi: 10.1523/JNEUROSCI.0822-10.2010.
10
Pupil diameter predicts changes in the exploration-exploitation trade-off: evidence for the adaptive gain theory.
J Cogn Neurosci. 2011 Jul;23(7):1587-96. doi: 10.1162/jocn.2010.21548. Epub 2010 Jul 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验