Department of Psychiatry, Columbia University, New York, New York, USA.
Nat Neurosci. 2011 Feb;14(2):154-62. doi: 10.1038/nn.2723.
Over the last decade and a half, reinforcement learning models have fostered an increasingly sophisticated understanding of the functions of dopamine and cortico-basal ganglia-thalamo-cortical (CBGTC) circuits. More recently, these models, and the insights that they afford, have started to be used to understand important aspects of several psychiatric and neurological disorders that involve disturbances of the dopaminergic system and CBGTC circuits. We review this approach and its existing and potential applications to Parkinson's disease, Tourette's syndrome, attention-deficit/hyperactivity disorder, addiction, schizophrenia and preclinical animal models used to screen new antipsychotic drugs. The approach's proven explanatory and predictive power bodes well for the continued growth of computational psychiatry and computational neurology.
在过去的十五年中,强化学习模型促进了对多巴胺和皮质基底节丘脑皮质(CBGTC)回路功能的日益深入的理解。最近,这些模型以及它们提供的见解已开始用于理解涉及多巴胺能系统和 CBGTC 回路紊乱的几种精神疾病和神经疾病的重要方面。我们回顾了这种方法及其在帕金森氏病,图雷特氏综合征,注意缺陷/多动障碍,成瘾,精神分裂症和用于筛选新型抗精神病药的临床前动物模型中的现有和潜在应用。该方法经过验证的解释和预测能力为计算精神病学和计算神经科学的持续发展提供了良好的前景。