Suppr超能文献

遗传易感性位点、农药暴露与前列腺癌风险。

Genetic susceptibility loci, pesticide exposure and prostate cancer risk.

机构信息

Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, United States of America.

出版信息

PLoS One. 2013 Apr 4;8(4):e58195. doi: 10.1371/journal.pone.0058195. Print 2013.

Abstract

Uncovering SNP (single nucleotide polymorphisms)-environment interactions can generate new hypotheses about the function of poorly characterized genetic variants and environmental factors, like pesticides. We evaluated SNP-environment interactions between 30 confirmed prostate cancer susceptibility loci and 45 pesticides and prostate cancer risk in 776 cases and 1,444 controls in the Agricultural Health Study. We used unconditional logistic regression to estimate odds ratios (ORs) and 95% confidence intervals (CIs). Multiplicative SNP-pesticide interactions were calculated using a likelihood ratio test. After correction for multiple tests using the False Discovery Rate method, two interactions remained noteworthy. Among men carrying two T alleles at rs2710647 in EH domain binding protein 1 (EHBP1) SNP, the risk of prostate cancer in those with high malathion use was 3.43 times those with no use (95% CI: 1.44-8.15) (P-interaction= 0.003). Among men carrying two A alleles at rs7679673 in TET2, the risk of prostate cancer associated with high aldrin use was 3.67 times those with no use (95% CI: 1.43, 9.41) (P-interaction= 0.006). In contrast, associations were null for other genotypes. Although additional studies are needed and the exact mechanisms are unknown, this study suggests known genetic susceptibility loci may modify the risk between pesticide use and prostate cancer.

摘要

揭示 SNP(单核苷酸多态性)-环境相互作用可以产生关于功能尚未充分描述的遗传变异和环境因素(如农药)的新假设。我们在农业健康研究中评估了 30 个已确认的前列腺癌易感性基因座与 45 种农药和前列腺癌风险之间的 SNP-环境相互作用,共纳入 776 例病例和 1444 例对照。我们使用无条件逻辑回归来估计比值比(OR)和 95%置信区间(CI)。使用似然比检验计算乘法 SNP-农药相互作用。使用 False Discovery Rate 方法校正多重检验后,有两个相互作用仍然值得注意。在 EH 结构域结合蛋白 1(EHBP1)SNP 中 rs2710647 携带两个 T 等位基因的男性中,高马拉硫磷使用与前列腺癌风险的比值比为 3.43(95%CI:1.44-8.15)(P 交互=0.003)。在 TET2 中 rs7679673 携带两个 A 等位基因的男性中,高 aldrin 使用与前列腺癌相关的风险是无使用的 3.67 倍(95%CI:1.43,9.41)(P 交互=0.006)。相比之下,其他基因型的相关性为零。尽管需要更多的研究,并且确切的机制尚不清楚,但这项研究表明,已知的遗传易感性基因座可能会改变农药使用与前列腺癌之间的风险。

相似文献

1
Genetic susceptibility loci, pesticide exposure and prostate cancer risk.
PLoS One. 2013 Apr 4;8(4):e58195. doi: 10.1371/journal.pone.0058195. Print 2013.
2
Xenobiotic-metabolizing gene variants, pesticide use, and the risk of prostate cancer.
Pharmacogenet Genomics. 2011 Oct;21(10):615-23. doi: 10.1097/FPC.0b013e3283493a57.
3
Genetic variation in nucleotide excision repair pathway genes, pesticide exposure and prostate cancer risk.
Carcinogenesis. 2012 Feb;33(2):331-7. doi: 10.1093/carcin/bgr258. Epub 2011 Nov 18.
4
Joint associations between established genetic susceptibility loci, pesticide exposures, and risk of prostate cancer.
Environ Res. 2023 Nov 15;237(Pt 2):117063. doi: 10.1016/j.envres.2023.117063. Epub 2023 Sep 1.
6
Genetic variation in base excision repair pathway genes, pesticide exposure, and prostate cancer risk.
Environ Health Perspect. 2011 Dec;119(12):1726-32. doi: 10.1289/ehp.1103454. Epub 2011 Aug 2.
7
Pesticide use modifies the association between genetic variants on chromosome 8q24 and prostate cancer.
Cancer Res. 2010 Nov 15;70(22):9224-33. doi: 10.1158/0008-5472.CAN-10-1078. Epub 2010 Oct 26.
8
Association between two unlinked loci at 8q24 and prostate cancer risk among European Americans.
J Natl Cancer Inst. 2007 Oct 17;99(20):1525-33. doi: 10.1093/jnci/djm169. Epub 2007 Oct 9.
9
Pesticide exposure and inherited variants in vitamin d pathway genes in relation to prostate cancer.
Cancer Epidemiol Biomarkers Prev. 2013 Sep;22(9):1557-66. doi: 10.1158/1055-9965.EPI-12-1454. Epub 2013 Jul 5.
10
Replication of prostate cancer risk loci in a Japanese case-control association study.
J Natl Cancer Inst. 2009 Oct 7;101(19):1330-6. doi: 10.1093/jnci/djp287. Epub 2009 Sep 2.

引用本文的文献

1
An Updated Evaluation of Atrazine-Cancer Incidence Associations among Pesticide Applicators in the Agricultural Health Study Cohort.
Environ Health Perspect. 2024 Feb;132(2):27010. doi: 10.1289/EHP13684. Epub 2024 Feb 21.
3
Joint associations between established genetic susceptibility loci, pesticide exposures, and risk of prostate cancer.
Environ Res. 2023 Nov 15;237(Pt 2):117063. doi: 10.1016/j.envres.2023.117063. Epub 2023 Sep 1.
6
Cancer and occupational exposure to pesticides: an umbrella review.
Int Arch Occup Environ Health. 2021 Jul;94(5):945-957. doi: 10.1007/s00420-020-01638-y. Epub 2021 Jan 25.
7
An Overview of the Cytoskeleton-Associated Role of PDLIM5.
Front Physiol. 2020 Aug 7;11:975. doi: 10.3389/fphys.2020.00975. eCollection 2020.
8
Pesticide exposure and risk of aggressive prostate cancer among private pesticide applicators.
Environ Health. 2020 Mar 5;19(1):30. doi: 10.1186/s12940-020-00583-0.
9
Prostate Cancer Disparities by Race and Ethnicity: From Nucleotide to Neighborhood.
Cold Spring Harb Perspect Med. 2018 Sep 4;8(9):a030387. doi: 10.1101/cshperspect.a030387.
10
High expression of PDLIM5 facilitates cell tumorigenesis and migration by maintaining AMPK activation in prostate cancer.
Oncotarget. 2017 Sep 18;8(58):98117-98134. doi: 10.18632/oncotarget.20981. eCollection 2017 Nov 17.

本文引用的文献

1
Risk of total and aggressive prostate cancer and pesticide use in the Agricultural Health Study.
Am J Epidemiol. 2013 Jan 1;177(1):59-74. doi: 10.1093/aje/kws225. Epub 2012 Nov 21.
2
A functional variant at a prostate cancer predisposition locus at 8q24 is associated with PVT1 expression.
PLoS Genet. 2011 Jul;7(7):e1002165. doi: 10.1371/journal.pgen.1002165. Epub 2011 Jul 21.
3
Molecular mechanism and physiological functions of clathrin-mediated endocytosis.
Nat Rev Mol Cell Biol. 2011 Jul 22;12(8):517-33. doi: 10.1038/nrm3151.
4
Genome-wide association study identifies new prostate cancer susceptibility loci.
Hum Mol Genet. 2011 Oct 1;20(19):3867-75. doi: 10.1093/hmg/ddr295. Epub 2011 Jul 8.
5
Identification of a novel prostate cancer susceptibility variant in the KLK3 gene transcript.
Hum Genet. 2011 Jun;129(6):687-94. doi: 10.1007/s00439-011-0981-1. Epub 2011 Apr 5.
6
Association of prostate cancer risk Loci with disease aggressiveness and prostate cancer-specific mortality.
Cancer Prev Res (Phila). 2011 May;4(5):719-28. doi: 10.1158/1940-6207.CAPR-10-0292. Epub 2011 Mar 2.
7
Fine mapping the KLK3 locus on chromosome 19q13.33 associated with prostate cancer susceptibility and PSA levels.
Hum Genet. 2011 Jun;129(6):675-85. doi: 10.1007/s00439-011-0953-5. Epub 2011 Feb 15.
8
Genetic correction of PSA values using sequence variants associated with PSA levels.
Sci Transl Med. 2010 Dec 15;2(62):62ra92. doi: 10.1126/scitranslmed.3001513.
9
An update of cancer incidence in the Agricultural Health Study.
J Occup Environ Med. 2010 Nov;52(11):1098-105. doi: 10.1097/JOM.0b013e3181f72b7c.
10
Pesticide use modifies the association between genetic variants on chromosome 8q24 and prostate cancer.
Cancer Res. 2010 Nov 15;70(22):9224-33. doi: 10.1158/0008-5472.CAN-10-1078. Epub 2010 Oct 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验