Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD 20892-7240, USA.
Carcinogenesis. 2012 Feb;33(2):331-7. doi: 10.1093/carcin/bgr258. Epub 2011 Nov 18.
Previous research demonstrates increased prostate cancer risk for pesticide applicators and pesticide manufacturing workers. Although underlying mechanisms are unknown, human biomonitoring studies indicate increased genetic damage (e.g. chromosomal aberrations) with pesticide exposure. Given that the nucleotide excision repair (NER) pathway repairs a broad range of DNA damage, we evaluated interactions between pesticide exposure and 324 single-nucleotide polymorphisms (SNPs) tagging 27 NER genes among 776 prostate cancer cases and 1444 male controls in a nested case-control study of white Agricultural Health Study pesticide applicators. We determined interaction P values using likelihood ratio tests from logistic regression models and three-level pesticide variables (none/low/high) based on lifetime days of use weighted to an intensity score. We adjusted for multiple comparisons using the false discovery rate (FDR) method. Of the 17 interactions that met FDR <0.2, 3 displayed a monotonic increase in prostate cancer risk with increasing exposure in one genotype group and no significant association in the other group. Men carrying the variant A allele at ERCC1 rs2298881 exhibited increased prostate cancer risk with high versus no fonofos use [odds ratio (OR) 2.98; 95% confidence interval (CI) 1.65-5.39; P(interact) = 3.6 × 10(-4); FDR-adjusted P = 0.11]. Men carrying the homozygous wild-type TT genotype at two correlated CDK7 SNPs, rs11744596 and rs2932778 (r(2) = 1.0), exhibited increased risk with high versus no carbofuran use (OR 2.01; 95% CI 1.31-3.10 for rs11744596; P(interact) = 7.2 × 10(-4); FDR-adjusted P = 0.09). In contrast, we did not observe associations among men with other genotypes at these loci. While requiring replication, our findings suggest a role for NER genetic variation in pesticide-associated prostate cancer risk.
先前的研究表明,接触农药和从事农药制造业的人群患前列腺癌的风险增加。尽管其潜在机制尚未明确,但人体生物监测研究表明,接触农药会导致遗传损伤(如染色体畸变)增加。鉴于核苷酸切除修复(NER)途径可以修复广泛的 DNA 损伤,我们在一项针对白人农业健康研究农药施用者的巢式病例对照研究中,评估了农药暴露与 27 个 NER 基因中的 324 个单核苷酸多态性(SNP)之间的相互作用,该研究共纳入了 776 例前列腺癌病例和 1444 名男性对照。我们使用基于终生使用天数加权至强度评分的三水平农药变量(无/低/高),通过逻辑回归模型中的似然比检验来确定交互作用 P 值。我们使用错误发现率(FDR)方法进行了多次比较调整。在 FDR < 0.2 的 17 个相互作用中,有 3 个在一个基因型组中随着暴露的增加而呈现出前列腺癌风险的单调增加,而在另一个组中则没有显著关联。携带 ERCC1 rs2298881 变异 A 等位基因的男性,与使用 Fonofos 高剂量相比,无 Fonofos 暴露时患前列腺癌的风险增加[比值比(OR)2.98;95%置信区间(CI)1.65-5.39;P(交互作用)= 3.6 × 10(-4);FDR 调整后的 P = 0.11]。携带两个相关的 CDK7 SNPs(rs11744596 和 rs2932778)纯合野生型 TT 基因型的男性,与高剂量相比,无carbofuran 暴露时患前列腺癌的风险增加(rs11744596 的 OR 2.01;95% CI 1.31-3.10;P(交互作用)= 7.2 × 10(-4);FDR 调整后的 P = 0.09)。相比之下,我们在这些基因座的其他基因型的男性中并未观察到关联。虽然需要进一步复制,但我们的研究结果表明,NER 遗传变异在与农药相关的前列腺癌风险中起作用。